
Computational Methods for Domination Problems

by

William Herbert Bird

B.Sc., University of Victoria, 2011

M.Sc., University of Victoria, 2013

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

c© William Herbert Bird, 2017

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.



ii

Computational Methods for Domination Problems

by

William Herbert Bird

B.Sc., University of Victoria, 2011

M.Sc., University of Victoria, 2013

Supervisory Committee

Dr. Wendy Myrvold, Supervisor

(Department of Computer Science)

Dr. Venkatesh Srinivasan, Departmental Member

(Department of Computer Science)

Dr. Kieka Mynhardt, Outside Member

(Department of Mathematics and Statistics)



iii

Supervisory Committee

Dr. Wendy Myrvold, Supervisor

(Department of Computer Science)

Dr. Venkatesh Srinivasan, Departmental Member

(Department of Computer Science)

Dr. Kieka Mynhardt, Outside Member

(Department of Mathematics and Statistics)

ABSTRACT

For a graph G, the minimum dominating set problem is to find a minimum size set S

of vertices of G such that every vertex is either in S or adjacent to a vertex in the set.

The decision version of this problem, which asks whether G has a dominating set of a

particular size k, is known to be NP-complete, and no polynomial time algorithm to solve

the problem is currently known to exist. The queen domination problem is to find the

minimum number of queens which, collectively, can attack every square on an n × n chess

board. The related border queen problem is to find such a collection of queens with the added

restriction that all queens lie on the outer border of the board. This thesis studies practical

exponential time algorithms for solving domination problems, and presents an experimental

comparison of several different algorithms, with the goal of producing a broadly effective



iv

general domination solver for use by future researchers. The developed algorithms are then

used to solve several open problems, including cases of the queen domination problem and

the border queen problem. In addition, new theoretical upper bounds are presented for the

border queen problem for some families of queen graphs.



v

Contents

Supervisory Committee ii

Abstract iii

Table of Contents v

List of Tables viii

List of Figures xi

List of Algorithms xiv

1 Introduction 1

1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Dominating Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Independent Dominating Sets . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Complexity and Parameterized Complexity . . . . . . . . . . . . . . . . . . . 5

1.3 Related Computational Problems . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Algorithms to Compute Minimum Dominating Sets . . . . . . . . . . . . . . 11

2 Queen Graphs and Other Interesting Graph Classes 15

2.1 The Queen Domination Problem . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Irredundant Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



vi

2.3 The Border Queen Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Kneser Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Covering Codes and Football Pools . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Triangle Grid Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Hex Rook Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Cartesian Products of Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Algorithms 34

3.1 Backtracking Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Bounding Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 Vertex Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.3 Neighbour Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Bounding With Fixed Vertex Ordering . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Implementation: Algorithm 3.2 . . . . . . . . . . . . . . . . . . . . . 38

3.3 Domination Degree Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Domination Degree Multiset . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Candidate Degree Priority Queue . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Implementation: Algorithm 3.5 . . . . . . . . . . . . . . . . . . . . . 58

3.4 Max Dominator Degree Algorithms . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 MDD Ranking Data Structure . . . . . . . . . . . . . . . . . . . . . . 63

3.4.2 Implementation: Algorithm 3.7 . . . . . . . . . . . . . . . . . . . . . 66

4 Experimental Evaluation of Domination Algorithms 70

4.1 Input Graph Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Mitigating the impact of ‘luck’ . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Fixed-Ordering Implementations . . . . . . . . . . . . . . . . . . . . . . . . . 77



vii

4.4 Domination Degree Implementations . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Single Aspect Comparisons . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Max Dominator Degree Implementations . . . . . . . . . . . . . . . . . . . . 88

4.5.1 Single Aspect Comparison . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Comparison of Framework Algorithms . . . . . . . . . . . . . . . . . . . . . 96

4.7 Comparison with SageMath . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.8 Choosing Representative Algorithms . . . . . . . . . . . . . . . . . . . . . . 103

4.8.1 Overall Variant Comparison . . . . . . . . . . . . . . . . . . . . . . . 105

4.8.2 Comparison of Variants by Graph Family . . . . . . . . . . . . . . . . 107

5 New Domination Results for Queen Problems 113

5.1 Computing Independent Dominating Sets . . . . . . . . . . . . . . . . . . . . 114

5.2 Splitting Computation Among Processes . . . . . . . . . . . . . . . . . . . . 115

5.3 Counting Solutions up to Isomorphism . . . . . . . . . . . . . . . . . . . . . 118

5.4 Certificates of Independent Dominating Sets . . . . . . . . . . . . . . . . . . 119

5.5 Rotated Border Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5.1 Searching for Minimum RBCs . . . . . . . . . . . . . . . . . . . . . . 139

5.5.2 Summary of Border Queen Results . . . . . . . . . . . . . . . . . . . 142

6 Unidom 149

6.1 The unidom Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2 Input Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3 Preprocessing Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.4 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5 Output Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7 Conclusions and Future Research 161



viii

Bibliography 165



ix

List of Tables

Table 2.1 Domination Numbers of Kneser Graphs . . . . . . . . . . . . . . . . . 27

Table 2.2 Solutions to the Football Pool Problem for n = 1, . . . , 10 . . . . . . . . 29

Table 2.3 Domination Numbers of Hypercubes Qn for n = 1, . . . , 11 . . . . . . . 29

Table 2.4 Domination Numbers of Hex Rook Graphs . . . . . . . . . . . . . . . 32

Table 4.1 Optimization Experiment Input Graphs . . . . . . . . . . . . . . . . . 73

Table 4.2 Fixed Ordering Running Times: Covering Code Graphs . . . . . . . . 79

Table 4.3 Fixed Ordering Running Times: Hex Rook Graphs . . . . . . . . . . . 79

Table 4.4 Fixed Ordering Running Times: Kneser Graphs . . . . . . . . . . . . 79

Table 4.5 Fixed Ordering Running Times: Knight Graphs . . . . . . . . . . . . 80

Table 4.6 Fixed Ordering Running Times: Cartesian Products of Cycles . . . . 80

Table 4.7 Fixed Ordering Running Times: Queen Graphs . . . . . . . . . . . . . 80

Table 4.8 Fixed Ordering Running Times: Triangle Grid Graphs . . . . . . . . . 81

Table 4.9 DD Bounding: Summary of maximum time ratios for all aspects on all

graph families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 4.10 DD Bounding: Summary of maximum total call ratios for all aspects

on all graph families . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Table 4.11 MDD Bounding: Summary of maximum time ratios for all aspects on

all graph families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Table 4.12 MDD Bounding: Summary of maximum total call ratios for all aspects

on all graph families . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



x

Table 4.13 Comparison of Framework Algorithms - Maximum Times: Covering

Code Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table 4.14 Comparison of Framework Algorithms - Maximum Times: Hex Rook

Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 4.15 Comparison of Framework Algorithms - Maximum Times: Kneser Graphs 98

Table 4.16 Comparison of Framework Algorithms - Maximum Times: Knight Graphs 99

Table 4.17 Comparison of Framework Algorithms - Maximum Times: Cartesian

Products of Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table 4.18 Comparison of Framework Algorithms - Maximum Times: Queen Graphs 99

Table 4.19 Comparison of Framework Algorithms - Maximum Times: Triangular

Grid Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Table 4.20 SageMath vs. Framework 3.1 - Maximum Times: Covering Code Graphs101

Table 4.21 SageMath vs. Framework 3.1 - Maximum Times: Hex Rook Graphs . 101

Table 4.22 SageMath vs. Framework 3.1 - Maximum Times: Kneser Graphs . . . 101

Table 4.23 SageMath vs. Framework 3.1 - Maximum Times: Knight Graphs . . . 102

Table 4.24 SageMath vs. Framework 3.1 - Maximum Times: Cartesian Products

of Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table 4.25 SageMath vs. Framework 3.1 - Maximum Times: Queen Graphs . . . 102

Table 4.26 SageMath vs. Framework 3.1 - Maximum Times: Triangular Grid Graphs102

Table 4.27 Best 10 average maximum time fractions of tested algorithms on the

entire input dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Table 4.28 Best 10 average maximum time fractions of tested algorithms on the

20 moderately difficult graphs in the input dataset. . . . . . . . . . . 106

Table 4.29 Maximum times of Framework 3.1 variants on Covering Code graphs. 108

Table 4.30 Maximum times of Framework 3.1 variants on Hex Rook graphs. . . . 109

Table 4.31 Maximum times of Framework 3.1 variants on Kneser graphs. . . . . . 110



xi

Table 4.32 Maximum times of Framework 3.1 variants on Knight graphs. . . . . . 110

Table 4.33 Maximum times of Framework 3.1 variants on Cartesian Products of

Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Table 4.34 Maximum times of Framework 3.1 variants on Queen graphs. . . . . . 111

Table 4.35 Maximum times of Framework 3.1 variants on Triangular Grid graphs. 112

Table 5.1 Domination Numbers of Queen Graphs . . . . . . . . . . . . . . . . . 114

Table 5.2 Number of Minimum Dominating Sets of Queen Graphs up to Isomor-

phism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Table 5.3 Number of Minimum Independent Dominating Sets of Queen Graphs

up to Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Table 5.4 Minimum Border Dominating Sets of Queen Graphs up to Isomorphism 119

Table 5.5 Summary of Border Domination Parameters . . . . . . . . . . . . . . 143



xii

List of Figures

Figure 2.1 3× 3 chess board and Queen graph of order 3 . . . . . . . . . . . . . 17

Figure 2.2 A maximal irredundant set of C5 . . . . . . . . . . . . . . . . . . . . 19

Figure 2.3 Examples of the construction used in the proof of Theorem 2.8. . . . 23

Figure 2.4 Counterexample of an assertion by Burchett in [9]. . . . . . . . . . . 24

Figure 2.5 Triangle grid and hex rook graphs of order 3 . . . . . . . . . . . . . . 30

Figure 3.1 An 8× 8 board with two queens. . . . . . . . . . . . . . . . . . . . . 42

Figure 3.2 A 10× 10 board with three queens. . . . . . . . . . . . . . . . . . . . 61

Figure 4.1 DD Bounding: Histogram of pairwise ratios for Min. CD vs. Max.

CD vertex selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 4.2 DD Bounding: Histogram of pairwise ratios for ascending vs. descend-

ing neighbour order. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 4.3 DD Bounding: Histogram of pairwise ratios for force stop optimization

disabled vs. enabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.4 DD Bounding: Histogram of pairwise ratios for bound rechecking op-

timization disabled vs. enabled. . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.5 MDD Bounding: Histogram of pairwise ratios for Min. CD vs. Max.

CD vertex selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 4.6 MDD Bounding: Histogram of pairwise ratios for Min. MDD vs. Min.

CD vertex selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



xiii

Figure 4.7 MDD Bounding: Histogram of pairwise ratios for Min. MDD vs. Max.

CD vertex selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 4.8 MDD Bounding: Histogram of pairwise ratios for Max. MDD vs. Min.

CD vertex selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 4.9 MDD Bounding: Histogram of pairwise ratios for Max. MDD vs. Max.

CD vertex selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 4.10 MDD Bounding: Histogram of pairwise ratios for Min. MDD vs. Max.

MDD vertex selection. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 4.11 MDD Bounding: Histogram of pairwise ratios for ascending vs. de-

scending neighbour order. . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 4.12 MDD Bounding: Histogram of pairwise ratios for force stop optimiza-

tion disabled vs. enabled. . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 4.13 MDD Bounding: Histogram of pairwise ratios for bound rechecking

optimization disabled vs. enabled. . . . . . . . . . . . . . . . . . . . . 94

Figure 5.1 Two strategies for splitting a computation among multiple processes

(indicated by different colours). . . . . . . . . . . . . . . . . . . . . . 117

Figure 5.2 An independent dominating set of Queen (19) with size 11. . . . . . . 120

Figure 5.3 An independent dominating set of Queen (20) with size 11. . . . . . . 120

Figure 5.4 An independent dominating set of Queen (22) with size 12. . . . . . . 121

Figure 5.5 An independent dominating set of Queen (23) with size 13. . . . . . . 121

Figure 5.6 An independent dominating set of Queen (24) with size 13. . . . . . . 122

Figure 5.7 Examples of two canonical RBCs on n = 11. . . . . . . . . . . . . . 130

Figure 5.8 Examples of minimum RBCs for n ∈ {1, 2, 3, 4, 5, 6}. . . . . . . . . . 145

Figure 5.9 A minimum RBC of size 12 of Queen (14). . . . . . . . . . . . . . . . 146

Figure 6.1 Diagram of the ‘pipeline’ used by unidom computations. . . . . . . . 150



xiv

Figure 6.2 Example of the adjacency list representation of TG (3). . . . . . . . . 152



xv

List of Algorithms

3.1 Framework for a Backtracking Search . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Backtracking Algorithm using Bounding Strategy 3.1 . . . . . . . . . . . . . 40

3.3 Operations of the Domination Degree Multiset Structure . . . . . . . . . . . 48

3.4 Operations of the Candidate Degree Priority Queue Structure . . . . . . . . 54

3.5 Backtracking Algorithm using Bounding Strategy 3.3 . . . . . . . . . . . . . 59

3.6 MDD-based bound on the number of vertices needed to complete a dominating

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Backtracking Algorithm using Bounding Strategy 3.6 . . . . . . . . . . . . . 68



Chapter 1

Introduction

Consider the problem of placing eight queens on a standard chessboard such that no two

queens can attack each other. This problem, and its generalization, the n-queens problem,

originated as a logic puzzle in 1848 [4]. Problems like the 8-queens problem, or the 15-puzzle,

from the same time period [39], might have been idle amusements for mathematicians at

the time, much like Sudoku puzzles are today. Indeed, the first comprehensive theoretical

treatment of the n-queens problem appears to be in Mathematical Recreations and Essays

by W. W. Rouse Ball, originally written in 1892 [55]. Many such puzzles went unsolved for

years, and constructing a solution would have been a sign of high intellect or ‘cleverness’,

since, in many cases, no solution was within reach of the creator of the puzzle. At the time,

when clever humans were the only computing machines, these ‘mathematical recreations’

would have been as computationally difficult as today’s open research problems.

The n-queens problem and the 15-puzzle are now given as exercises to thousands of first

or second year computer science students every year. Displaying a solution is no longer a

sign of cleverness; instead, the cleverness comes with crafting a computer algorithm to solve

the problem conveniently. In fact, solving one of these 19th century puzzles by hand today

might be considered a foolish waste of time when a computer could find a solution in a frac-



2

tion of a second. In many ways, the classical ‘mathematical recreations’ only truly became

recreational when electronic computers superseded human ones. For today’s ‘hard’ compu-

tational problems, most of the human cleverness involves designing algorithms which will

solve (or approximately solve) the problem using reasonable resources (particularly memory

and running time).

This thesis studies practical methods for solving one particular hard problem called the

dominating set problem. Several new algorithms to solve the problem are given, and exper-

imental data is presented which shows that the algorithms are practical on several classes

of inputs for which existing methods are impractical. The new algorithms are used to solve

several open cases of a modern descendant of the classic 8-queens problem called the queen

domination problem, along with similar problems. A restricted variant of the queen dom-

ination problem, the queen border domination problem, is also studied, and various new

results–both theoretical and computational–are given for that problem, including a con-

jectured characterization of the solution to the border queen problem for a large number

of cases. Finally, the new algorithms are combined into a software tool for use by future

researchers.

Section 1.1 establishes the mathematical background used for the rest of this document

and defines the concept of a dominating set. Sections 1.2 - 1.4 define the computational

domination problem and survey previous results on domination problems in computer sci-

ence. The structure of the remaining chapters of this thesis is described at the end of Section

1.4.

1.1 Definitions

In general, the notation and definitions for graphs in this document are based on the con-

ventions established by West [65]. The algorithms and data structures studied in this thesis



3

are intended for use with a random access machine with a word size sufficient to store all

of the numerical values computed in each algorithm. Asymptotic bounds on time and space

complexity are stated in terms of this (fixed) word size.

1.1.1 Graphs

A graph G is an ordered pair (V,E) containing a set V of vertices and a collection E of

edges which correspond to unordered pairs uv of vertices in V . The vertex and edge sets of a

particular graph can be denoted by the functional notation V (G) and E(G). Given a vertex

v, a vertex u such that an edge uv exists is called a neighbour of v. The two endpoints u

and v of an edge uv are said to be adjacent. When the pairs in E are ordered, G is called

a directed graph, and the pairs in E are usually called arcs. Otherwise, the graph G is

undirected. If E is a multiset (which may contain a pair uv more than once), G is called a

multigraph. A loop in a graph is an edge of the form vv from a vertex v to itself. A graph

with no loops and no duplicate edges is called simple, and in this document, all graphs will

be simple and undirected. The degree of a vertex v ∈ V (G) is equal to the number of edges

incident to v, and the maximum degree over all vertices in a graph G is denoted by ∆(G)

(or just ∆ in cases where the graph is clear from context).

1.1.2 Dominating Sets

Let G be a graph on |V (G)| = n vertices. The closed neighbourhood of a vertex v ∈ V (G),

denoted by N [v], is a set containing v and all neighbours of v. If S ⊆ V (G) is a set of

vertices, then the closed neighbourhood of S is defined to be

N [S] =
⋃
v∈S

N [v].



4

A dominating set of a graph G is a set of vertices D ⊆ V (G) such that every vertex v ∈ V (G)

is either in D or adjacent to a vertex in D. Equivalently, a set D ⊆ V (G) is a dominating

set if and only if N [D] = V (G). The minimum number of vertices in a dominating set of G

is called the domination number of G and is denoted by γ(G).

The concept of domination can also be defined for individual vertices v or arbitrary

subsets S ⊆ V (G). A vertex v dominates all of the vertices in N [v] and a set S ⊆ V (G)

dominates all of the vertices in N [S].

1.1.3 Independent Dominating Sets

An independent set of a graph G is a subset S ⊆ V (G) such that no two vertices in S are

neighbours. Any maximal independent set S of a graph G must also be a dominating set

of G, since if any vertex v ∈ V (G) is not dominated by S, the set S ∪ {v} would be an

independent set (which contradicts the maximality of S). This property, combined with

the fact that every graph G on at least one vertex must have an independent set, implies

that every non-trivial graph must have an independent set which is also a dominating set.

The minimum size of an independent dominating set is called the independent domination

number of G and is denoted by i(G). The quantity i(G) is not to be confused with the overall

maximum size of an independent set (the independence number of G), which is typically

denoted by either α(G) or β(G). There is considerable disagreement over which symbol to

use for the independence number of a graph. Many of the articles referenced in this thesis

use β(G) or β0(G) instead of α(G). In this thesis, the notation α(G) is used consistently,

which may result in some notational inconsistencies with the referenced material.



5

1.2 Complexity and Parameterized Complexity

A decision problem is a computational problem which asks, for a given input string x,

whether or not x is a member of some language L. Decision problems are often phrased in

less abstract terms as problems for which there is a ‘yes’ or ‘no’ answer. An algorithm A

with an input x is said to accept a language L if A outputs ‘yes’ for all x ∈ L and ‘no’ for

all x /∈ L.

The complexity class NP contains all languages which are accepted by a non-deterministic

algorithm in polynomial time, or, equivalently, all languages L for which there exists some

deterministic polynomial time algorithm such that

L = {x ∈ Σ∗ : A accepts (x, c) for some c ∈ Σ∗}

where Σ is an alphabet [36]. The string c is normally called a certificate or witness.

Let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be languages over the alphabets Σ∗1 and Σ∗2, respectively. L1 is

said to be reducible to L2 if there exists a function f : Σ∗1 → Σ∗2 such that, for every x ∈ Σ∗1,

x ∈ L1 if and only if f(x) ∈ L2. Furthermore, if the mapping f can be computed by some

polynomial time algorithm A, then L1 is said to be polynomial time reducible to L2, denoted

by L1 ≤p L2. It should be noted that there are various types of polynomial time reductions;

the one defined here is often called a ‘Karp-reduction’ [36, 21]. The notion of reducibility can

be applied to two problems P1 and P2 by the applying the definition above to the languages

corresponding to instances of each problem encoded in some alphabet (for example, binary)

[36].

A decision problem P (which may not itself lie in NP) is said to be NP-hard if, for all

P ′ ∈ NP, P is polynomial time reducible to P ′ [3]. Note that the notion of NP-hardness can

also be defined for non-decision problems (such as counting or optimization problems), but

the decision-based version is sufficient for this thesis. If P ∈ NP and P is NP-hard, then P



6

is said to be NP-complete. To prove that a problem P is NP-hard, it is sufficient to prove

that some NP-hard problem can be reduced to P .

The classical Dominating Set decision problem takes a pair (G, k) consisting of a graph

G on n vertices and an integer k and asks whether G contains a dominating set of size at most

k. Dominating Set is in NP, since a dominating set S can be verified in polynomial time

by checking that S ⊆ V (G) and that for each v ∈ V (G), N [v] ∩ S 6= ∅. The Dominating

Set problem is also NP-complete, even under comparatively tight restrictions on the input,

such as restriction to planar graphs with maximum degree three [29]. Deciding whether a

graph G has an independent dominating set of a given size k is also NP-complete.

In addition to examining the complexity of the general form of a computational problem

P , the problem can be subdivided into classes by a parameterization, which is a positive

integer-valued function Par(x) such that, for each instance x of P , Par(x) is computable in

polynomial time 1. With respect to a particular parameterization Par(x), the problem P

is said to be fixed-parameter tractable if there exists an algorithm A which can give a ‘yes’

answer to an instance x of P in time asymptotically bounded by

f(Par(x))|x|c

where f is any integer-valued computable function and c is a constant [36]. Note that when

the parameter Par(x) is held fixed, the algorithm A asks membership in P in polynomial

time.

Domination problems have a particular theoretical significance in the study of parameter-

ized complexity, where the Dominating Set problem, parameterized by the set size k, is a

complete problem for the complexity class W [2], which is part of the W -hierarchy of param-

eterized complexity classes [53, 21]. Many of the other classical graph theoretical problems,

1For technical reasons which are not relevant to this work, Hromkovič [36] places other constraints on
parameterizations to exclude degenerate cases.



7

such as Independent Set and Clique, along with the venerable 3-SAT boolean satisfia-

bility problem, are complete for level W [1]. The levels of the W -hierarchy are defined by a

class of problems called Weighted weft t depth h Circuit Satisfiability, denoted

by WCS(t, h). For each level W [t] of the W -hierarchy, WCS(t, h) is a complete problem for

W [t].

The problems in WCS(t, h) are parameterized variants of circuit satisfiability with con-

straints on the depth and ‘weft’ of circuits (from which the W -hierarchy gets its name). The

depth of a circuit is the maximum number of gates between an input pin and an output pin.

In the model used to define the W -hierarchy, logic gates in the circuit are permitted to have

any number of input pins (so, for example, a disjunction of k inputs can be modelled by

a single OR gate). Gates whose fan-in is bounded above by some pre-determined constant

c (which is not dependent on the size or properties of a particular input) are said to be

‘small’, and gates whose fan-in is potentially unbounded (for example, because the fan-in is

a function of the input size) are said to be ‘large’. The weft of a circuit is the maximum

number of ‘large’ gates between an input pin and an output pin of the circuit [21].

An instance of WCS(t, h) consists of a pair (C, k) where C is an encoding of a circuit and

k is an integer, and (C, k) ∈WCS(t, h) if C has weft t, depth h and there exists a satisfying

assignment of C with at most k inputs set to one. The latter constraint is the result of

parameterizing the satisfiability problem by the Hamming weight k of the solution, and is

significant for studying parameterized complexity.

Membership in the W -hierarchy depends on the notion of a parameterized reduction,

which is a polynomial-time reduction between two parameterized languages L and L′ where

where an instance (P, k) (parameterized by k) can be reduced in polynomial time to an

instance (P ′, k′) (parameterized by k′) such that (P, k) ∈ L if and only if (P ′, k′) ∈ L′, with

the additional constraint that the parameter k′ must be determined strictly by the value of k,

rather than by any of the contents of the problem instance P [21]. The added constraint on



8

k and k′ is what differentiates the reduction from the standard polynomial-time reductions

used to prove NP-hardness.

A parameterized problem P can be shown to be a member of the class W [t] by giving

a parameterized reduction from P to WCS(t, h) for some (fixed) h. The venerable 3-SAT

problem decides whether a boolean formula in 3-CNF form (consisting of a conjunction of

clauses containing exactly 3 literals) has a satisfying assignment. A parameterization of

3-SAT by the Hamming weight k of the satisfying assignment can be shown to be in W [1]

by constructing a circuit with 3-input OR gates to compute each clause and an unbounded-

input AND gate to take the conjunction of all clauses. This circuit has weft one and depth

two, and any solution to the 3-SAT instance with k 1-bits will correspond to a solution of

WCS(1, 2) with k 1-bits. Additionally, the circuit can be constructed in polynomial time, so

the requirements of the parameterized reduction are met. The Independent Set problem

has also been shown to lie in W [1] [21].

The set FPT of all problems which are fixed-parameter tractable is equivalent to W [0]

[21]. A set S ⊆ V (G) is a vertex cover of a graph G if every edge of G has at least one

endpoint in S. The computational Vertex Cover problem takes a graph G and an integer

k and asks whether there exists a vertex cover of G with size at most k. Vertex Cover,

parameterized by the size k of the vertex cover, is fixed parameter tractable: Whether or not

a graph G on n vertices has a vertex cover of size at most k can be decided in O(2kn) time.

As mentioned previously, Independent Set, parameterized by the set size, is complete

for W [1] and Dominating Set, parameterized by set size, is complete for W [2] [21]. The

problem of finding an independent dominating set is also known to be W [2]-hard, due to

a result by Downey, Fellows, McCartin and Rosamund [22] which gave a parameterized

reduction of the dominating set problem to the independent dominating set problem2.

Although Independent Set is complete for W [1], the restriction of Independent

2Note that the reduction in question was given as part of a larger proof of a more significant result
regarding approximability of dominating sets.



9

Set to planar graphs is fixed-parameter tractable [21]. Similarly, although Dominating

Set is complete for W [2], the restriction of Dominating Set to planar graphs is fixed-

parameter tractable [2, 28]. The first complete proof of an FPT algorithm for computing

dominating sets of planar graphs was given by Alber et al. [2] and had running time O(8kn)

to compute a dominating set of size k on a planar graph with n vertices. This result

was extended to produce a fixed-parameter tractable algorithm for finding dominating sets

of graphs embeddable in surfaces of any (fixed) genus by Ellis, Fan and Fellows [23]. A

different analysis of the algorithm in [2] later revealed that the running time was O(7kn)

[21]. A different decomposition technique was used by Fomin and Thilikos [28] to produce an

O(215.13
√
k + n3) algorithm, although the authors of [28] warn that their algorithm may not

be practical in its presented state. Philip, Raman and Sikdar [53] proved that the restriction

of the parameterized Dominating Set to graphs which do not contain Ki,j as a subgraph

(for a fixed i and j) is fixed-parameter tractable.

1.3 Related Computational Problems

The Set Cover problem takes a universe U , a collection S of subsets of U and an integer k

and decides whether there exists a collection S1, S2, . . . , Sk ∈ S such that S1∪S2∪. . .∪Sk = U .

The dimension of an instance (U ,S, k) of Set Cover is equal to |U|+ |S|. The associated

optimization problem of minimizing k is called Minimum Set Cover. The Set Cover

problem is known to be NP-complete [29, 40]. The Dominating Set problem can be

reduced to Set Cover with a relatively natural transformation, which meets the criteria

for a parameterized reduction and is detailed in Lemma 1.1.

Lemma 1.1 (Karp via Downey and Fellows [21]3). Let (G, k) be an instance of Dominating

3Karp’s original paper [40] does not cover the dominating set problem, but [21] attributes the reduction
to Karp.



10

Set and let n = |V (G)|. Taking

U = V (G), S = {N [v] : v ∈ V (G)}

results in an instance (U ,S, k) of Set Cover with dimension 2n. Note that the parameter

k for the dominating set size is maintained as the size of the cover. This reduction can be

performed in polynomial time.

�

Since reduction in Lemma 1.1 preserves the parameter k between the two problems, it

qualifies as a parameterized polynomial time reduction between Dominating Set (param-

eterized by set size) and Set Cover (parameterized by cover size).

An integer program (or integer linear program) is an optimization problem on integer

variables, consisting of an objective function and a collection of constraints. Integer program-

ming in general is known to be NP-hard, and the special case 0-1 Integer Programming,

which takes an integer program and an objective value q and decides whether any solution

to the program with objective value at most q exists, is known to be NP-complete [40, 29].

As with Set Cover, there is a straightforward reduction from Dominating Set to 0-1

Integer Programming. For an instance (G, k) of Dominating Set where |V (G)| = n

and V (G) = {v0, v1, . . . , vn−1}, the integer program shown below on n binary variables

x0, x1, . . . , xn−1 can be used to find dominating sets.

min. x0 + x1 + . . .+ xn−1

s.t. xi ∈ {0, 1} for 0 ≤ i ≤ n− 1

For each vi ∈ V (G), xi +
∑

vivj∈E(G)

xj ≥ 1

Specifically, for any solution to the integer program with objective value k, the set S = {vi :



11

xi = 1} is a dominating set of size k.

1.4 Algorithms to Compute Minimum Dominating Sets

Previous algorithmic research into the computation of minimum dominating sets for arbi-

trary graphs has been largely theoretical, and there has been considerable crossover in the

techniques used for general exponential time algorithms and the reduction rules used by

the fixed-parameter tractability results (such as the algorithm described by Alber et al. for

planar graphs [2]). Grandoni, in [32], described an algorithm for finding a minimum dom-

inating set of a graph on n vertices in O(1.8021n) time and exponential space, with the

running time increasing to O(1.9053n) if only polynomial space is used. The algorithm in

[32] was, fundamentally, a wrapper around the reduction from dominating set to minimum

set cover given in Lemma 1.1, and the main contribution of [32] was the algorithm for com-

puting minimum set cover, which requires O(1.3803n) time to solve a set cover instance of

dimension n. Since the dominating set problem on a graph G with n vertices can be reduced

to a set cover instance of dimension 2n, the set cover algorithm can solve Dominating Set

in O(1.38032n) = O(1.9053n) time.

Fomin, Grandoni and Kratsch [27] used an improved analysis technique called ‘mea-

sure and conquer’ to improve the running time on the exponential-space algorithm from

[32] to O(1.5136n) without modifying the algorithm4. Van Rooij and Bodlaender [60] used

additional reduction rules with the measure and conquer analysis technique to construct

a polynomial-space algorithm with running time O(1.4969n), which was further improved

to O(1.4864n) by Iwata [38]. Over this entire chain of results, there appears to have been

no attempt to implement the algorithms or measure their performance in practice, only to

produce a theoretical bound (indeed, the only computational results cited appear to be from

4The running time is stated as O(20.598n), which is equivalent to O(1.5136n). For consistency with other
results, the latter form is used here.



12

optimization algorithms for evaluating the bound on the running time). The most complete

representation of a dominating solver algorithm among the various articles is given in [60],

but consists simply of a list of reduction rules to be applied at each step of a backtracking

search. This specification is sufficient for proving the bounds on running time which are es-

tablished in the article, but likely to be extremely slow in practice, due to the overhead which

would accompany evaluating each reduction rule at every step of the search tree. There is

very little information in the literature regarding the practical performance of dominating

set solvers. Unlike other NP-complete problems, especially the venerable Satisfiability

problem, there does not appear to be much research activity into practical general purpose

solvers dedicated to the Dominating Set problem.

Algorithms for approximating minimum dominating sets have also been studied, particu-

larly connected dominating sets, which are dominating sets whose vertices induce a connected

subgraph of the original graph. Connected dominating sets have applications to networking,

and much of the research into their computation has come from networking fields [63, 66].

Guha and Khuller [33] present an algorithm to find a connected dominating set S of a graph

G with n vertices and maximum degree ∆ such that the size of S is at most (H(∆)+2)|Smin|,

where H is the harmonic function (which tends asymptotically toward loge(∆)) and Smin is

a minimum connected dominating set. Another result in [33] proves that the approximation

ratio of their algorithm is close to the best possible under the assumption that P 6= NP.

Chleb́ık and Chleb́ıkova [13] (apparently aggregating earlier results) prove that the min-

imum dominating set and minimum connected dominating set problems cannot be approxi-

mated in polynomial time to a ratio of less than loge(n) unless NP is a subset of problems

solvable in O(nc log log(n)) time (which is a weaker condition than P = NP). In a similar vein,

Irving [37] proved that an approximation algorithm for the minimum independent dominat-

ing set cannot achieve an approximation ratio bounded above by any constant. Halldórsson

[34] improved the lower bound in [37] and established that the no approximation ratio of



13

n1−ε can be achieved unless P = NP. The result in [34] places the independent dominating

set problem among the hardest problems in NP as far as approximation is concerned.

Since Dominating Set can be reduced to an instance of various other NP-hard prob-

lems, it is possible to find minimum dominating sets with solvers for other NP-complete

problems, and it appears that all widely-used general-purpose solvers are based on reduc-

tions from Dominating Set to an integer programming problem. The SageMath toolkit

[1] contains a fully-featured dominating set solver, with support for independent dominating

sets, which uses a Mixed Integer/Linear Programming (MILP) solver to compute its results.

SageMath is used later in this thesis as a reference solver for verification and comparison with

the algorithms tested in Chapter 4. The integer program used by SageMath for a particular

instance of the dominating set problem is the same integer program given in the previous

section.

For satisfiability and integer programming problems, there are a considerable variety of

solvers available with high performance in practice, even if the underlying algorithms do not

achieve the best-known asymptotic bounds on running time. The overarching objective of

the research in this thesis is to produce and demonstrate a general purpose solver program for

Dominating Set which improves on the performance of the existing integer programming-

based solvers for a variety of practical input cases, particularly those for which there exist

open problems of interest to researchers. Therefore, one of the objectives of this thesis is

a computational tool that will be useful for future domination research. In the process of

developing the general purpose solver algorithms, several other open domination problems

were solved and new theoretical results were created for some open problems.

Chapter 2 summarizes classes of graphs whose domination parameters are currently stud-

ied by researchers and may benefit from computational results. Chapter 3 defines a general

framework for a backtracking search algorithm and describes three classes of algorithm based

on the framework. Chapter 4 documents a large-scale experimental comparison of the dif-



14

ferent variants of the framework defined in Chapter 3 against each other and against the

SageMath dominating set solver. Chapter 5 describes new results on queen domination

problems, including solved cases of the domination number and border domination number

of queen graphs, as well as new theoretical results on the border queen problem. Chapter 6

describes a software package containing implementations of the most promising algorithms

described in Chapter 3 (based on the experimental data in Chapter 4) and Chapter 7 sum-

marizes the conclusions of this research as well as fruitful avenues for future research.



15

Chapter 2

Queen Graphs and Other Interesting

Graph Classes

This chapter details various families of graphs for which interesting open domination prob-

lems exist. Of these families, the queen graphs (Section 2.1) received the most attention in

the research for this thesis. The other families, which exhibit substantially different structure

from queen graphs, present different challenges for domination algorithms, and therefore were

studied primarily as a counterpoint to queen graphs for the purpose of producing a widely

useful dominating set solver. Although there many results on the computational complexity

of the general Dominating Set problem (and its variants), as detailed in the previous

chapter, the computational complexity of the domination problem on the specific families of

graphs in this chapter is unknown. Future research may reveal sub-exponential time methods

for solving some of these problems, but this thesis assumes that exponential-time algorithms

are necessary.



16

2.1 The Queen Domination Problem

The game of chess has been the source of several interesting mathematical puzzles which are

applications of graph theory. For example, the classical knight’s tour problem, of finding a

sequence of moves for a knight such that every square of the board is visited exactly once,

and the final move returns the knight to its starting position, can be considered an instance

of the NP-complete Hamiltonian Circuit problem [29].

In chess, a queen may move any distance along a horizontal, vertical, diagonal or back-

diagonal line. The famous n-queens problem is to find, for an n × n chess board, an ar-

rangement of n queens on the board such that no queen can attack another. Although the

classical n-queens problem was solved as early as 1874, a variety of related problems and

generalizations are still studied [4]. The n-queens problem is a set packing problem. A dual

problem is the queen domination problem. For a given board size n, the queen domination

problem is to find the minimum size of an arrangement of queens such that every square of

an n × n board is either occupied by a queen or can be captured by some queen. As the

name suggests, the queen domination problem is an instance of the dominating set problem,

and it has interested mathematicians almost as long as the n-queens problem [14].

The queen graph on an n × n board, denoted by Queen (n), contains a vertex for each

square of the n × n chess board and edges between all pairs of vertices in the same row,

column, diagonal or back diagonal. The set of squares which can be attacked by a queen on

a square v ∈ V (Queen (n)) corresponds to the neighbourhood of v. The vertices of Queen (n)

can be numbered vi,j for 0 ≤ i, j ≤ n−1 to denote the vertex corresponding to row i, column

j of the board, where v0,0, vn−1,0, vn−1,n−1 and v0,n−1 are the bottom-left, top-left, top-right

and bottom-right corners of the board, respectively. This numbering allows the vertices

of the queen graph to be put into a simple correspondence with the lattice points of the

Cartesian plane. The numbering schemes used in previous research vary between authors,

with some (such as Sinko and Slater [56]) using the scheme defined here and others (such



17

as Kearse and Gibbons [42]) placing v0,0 at the top left of the board. Figure 2.1 shows the

queen graph Queen (3) along with the associated 3×3 chess board. The domination number

of Queen (3) is 1, since a queen on the center square can capture all other squares.

(a) A 3× 3 chess board (b) The Queen graph Queen (3)

Figure 2.1: A 3 × 3 chessboard and the associated queen graph Queen (3). A queen in the
center square corresponds to a minimum dominating set of the graph.

The value γ(Queen (n)) is trivially at most n− 2, since placing queens along the forward

diagonal, except in the corner cells, will produce a dominating set. Although previous

research has produced upper bounds for the domination number of Queen (n) [10, 11, 64],

the exact value of γ(Queen (n)) is not known exactly for most values of n. For n ≤ 120,

γ(Queen (n)) ≤ dn/2e+ 1 for all open cases [42, 52]. Information on the open cases, as well

as a survey of theoretical results, can be found in Österg̊ard and Kaski [52]. Finozhenok and

Weakley [26] proved a lower bound on γ(Queen (n)) which is given in Theorem 2.1.

Theorem 2.1 (Finozhenok and Weakley [26, p. 299]). For all n except n = 3 and n = 11,

γ(Queen (n)) ≥ dn/2e.

�

Using the algorithms described in Chapter 3, three open cases of the queen domina-

tion problem were solved, establishing that γ(Queen (20)) = 11, γ(Queen (22)) = 12 and

γ(Queen (24)) = 13. The previous open case n = 19 was solved by Kearse and Gibbons



18

[42] using algorithms developed specifically for queen graphs. Some previous research has

studied the application of computational methods to the queen domination problem, no-

tably an article by Fernau from 2010 [25] which surveys various computational approaches

and establishes asymptotic upper bounds on the computation time of the queen domination

problem, but does not solve any open cases or present evidence that the algorithms are prac-

tical. While the algorithms developed in this thesis are designed as general solvers for the

dominating set problem, they were created with queen graphs in mind, and the experimen-

tal data in Chapter 4 shows that the algorithms introduced here are very effective on queen

graphs (and, in general, other dense graphs). Chapter 5 describes the various new results on

queen graphs produced by this thesis.

The queen domination problem is part of a large family of related problems on queen

graphs [35, 42]. Sections 2.2 and 2.3 describe two of these related problems.

2.2 Irredundant Sets

Let G be a graph on n vertices. An irredundant set of the vertices of G is a set S ⊆ V (G)

such that, for each v ∈ S, N [v] −N [S − {v}] 6= ∅. Less formally, an irredundant set is one

in which, for every vertex v in the set, at least one of the neighbours of v (or v itself) is not

dominated by any other vertex in S.

Irredundant sets have a number of connections to dominating sets. The problem of finding

an irredundant set is a packing problem, which is a natural dual to covering problems like

domination. Lemmas 2.2 and 2.3 establish some fundamental properties of irredundant sets.

Lemma 2.2 (Cockayne [16, p. 463]). Any minimal dominating set is also a maximal irre-

dundant set.

�



19

Lemma 2.3 (Cockayne et al. [15, p. 250-251]). If deg(v) ≥ 1 for all v ∈ V (G), then for all

irredundant sets X ⊆ V (G), the set V (G)−X is a dominating set.

�

The authors of [15] observe that one consequence of Lemma 2.3, taken together with the

result of Lemma 2.2, is that if G has no isolated vertices, then for any minimal dominating

set D ⊆ V (G), the set V (G)−D must also be a dominating set. The converse of Lemma 2.2,

the statement that a maximal irredundant set is a dominating set, is not true. Figure 2.2

shows a counterexample. The vertices shaded in red represent an irredundant set of size 2.

The blue vertex is not dominated by either of the red vertices, so the set is not dominating.

However, the set is a maximal irredundant set, since adding any vertex to the set will make

one of the red vertices redundant.

Figure 2.2: A maximal irredundant set (in red) of C5 which is not a dominating set.

The minimum size of a maximal irredundant set of a graph G, denoted by ir(G), is called

the lower irredundance number of G. The maximum size of an irredundant set, denoted

by IR(G), is called the upper irredundance number. A consequence of Lemma 2.2 is that

ir(G) ≤ γ(G) ≤ IR(G) [16].

Lower bounds on IR(Queen (n)) for queen graphs have been well-studied. Currently, the

best lower bound (due to Kearse and Gibbons [43, p. 237]) and upper bound (due to Burger,



20

Cockayne and Mynhardt [10, p. 66]) on IR(Queen (n)) give

6n−O(n2/3) ≤ IR(Queen (n)) ≤
⌊

6n+ 6− 8

√
n+ 1 +

√
n

⌋
.

Bollobás and Cockayne [6] proved a general lower bound on ir(G), which is given in

Lemma 2.4. For the special case of trees, Damaschke [19] proved a lower bound of ir(G) >

2γ(G)
3

. Favaron et al. [24] proved lower bounds on both IR(G) and ir(G) for the king’s

graph (corresponding to the moves of a king in traditional chess). Rautenbach [54] and later

Zverovich [67] proved several results on the differences between various graph-theoretic quan-

tities, including domination number, independence number and the irredundance numbers.

Lemma 2.4 (Bollobás and Cockayne [6, p. 198]). If G is a graph on n vertices with maximum

degree ∆ ≥ 2, then ir(G) ≥ n
2∆−1

.

�

There are families of irredundance perfect graphs G for which ir(G) = γ(G) [61]. It

is unknown whether queen graphs are irredundance perfect, although the very limited data

available on ir(Queen (n)) does not contradict this possibility. However, Kearse and Gibbons

[42] note that several previous authors have conjectured that ir(Queen (n)) diverges from

γ(Queen (n)) eventually. For n ≤ 10, it is known that ir(Queen (n)) = γ(Queen (n)) [17].

2.3 The Border Queen Problem

The border queen problem, proposed by Sinko and Slater [56], is to find a dominating set

of Queen (n) using only squares on the border of the chessboard. The border queen prob-

lem is an example of a restricted domination problem, in which some vertices must al-

ways be excluded from the dominating set. The minimum size of such a set is denoted by

bor (Queen (n)). The values of bor (Queen (n)) for n ≤ 13 were given by Sinko and Slater in



21

[56]. Chapter 5 describes several new computational and theoretical results for the border

queen problem, as well as conjectures for future research to characterize bor (Queen (n)).

In addition to formalizing the border queen problem, [56] also contains constructive proofs

of several upper bounds on bor (Queen (n)). A general upper bound originally stated in [56]

is given in Theorem 2.8, with a revised proof for consistency with the rest of this section,

and a general lower bound is given in Theorem 2.9.

To improve the readability of the proofs in this section, the following terms will be used

to describe the various ways that two vertices vi,j and vk,` can be neighbours in the queen

graph Queen (n).

Condition 2.5. vk,` is a diagonal neighbour of vi,j if

k − i = `− j

Condition 2.6. vk,` is a back-diagonal neighbour of vi,j if

k − i = j − `

Additionally, the following fact will be used to support some of the bounding results later

in this section.

Lemma 2.7. Any border vertex u of Queen (n) has degree 3n− 2.

Proof. Without loss of generality, assume that u is a border cell in row 0 (along the bottom

of the board). This assumption is valid due to rotational symmetry. There are a total of n

vertices in row 0, including u. The column containing u has n − 1 vertices, not including

u itself. The forward diagonal of u contains one vertex per column, starting at the column

to the right of u, and the back diagonal of u contains one vertex per column, starting at

column 0 and continuing to the column to the left of u. Together, the two diagonals cover



22

n− 1 vertices.

Theorem 2.8 (Sinko and Slater [56, p. 4824]). For all n ≥ 4, bor (Queen (n)) ≤ n− 2.

Proof. Note that the proof given here has been revised from the one given in [56] to use a

different construction. Let n ≥ 4 and let

S = {v0,2, v0,3, . . . , v0,n−3} ∪ {vn−1,1, vn−1,n−2}.

For visual reference, examples of this construction for n = 10 and n = 11 are given in Figure

2.3. Since S contains a vertex in every column in the range 1, 2, . . . , n − 2, every vertex

in those columns is dominated. Since S is symmetric about a horizontal reflection, it is

sufficient to demonstrate that every vertex in column 0 is dominated to establish that S is

a dominating set.

Consider a vertex vi,0 where 0 ≤ i ≤ n−1. If i = 0 or i = n−1, vi,0 is in a row containing

vertices of S and therefore is dominated. If i = n − 2, then the diagonal neighbour vn−1,1

dominates vi,0. If i = 1, then vi,0 is dominated by vn−1,n−2, which is a back-diagonal neighbour

of vi,0. Otherwise, if 2 ≤ i ≤ n− 3, the vertex v0,i, which is a diagonal neighbour of vi,0, will

dominate vi,0.

Therefore, S is a dominating set of size n− 2.

Theorem 2.9 (Sinko and Slater [56, p. 4824]). For all n ≥ 4,

bor (Queen (n)) ≥ 2n− 1

2

√
8n2 − 40n− 49− 9

2
.

�

Additional upper bounds are proven in [56] using constructions which leverage the ro-

tational symmetry of the board. Section 5.5 contains a discussion of these results in the

context of a new classification of symmetric constructions for the border queen problem.



23

(a) n = 10 (b) n = 11

Figure 2.3: Examples of the construction used in the proof of Theorem 2.8.

For a border dominating set S of Queen (n), define r(S), c(S) and d(S) (or, when the

context is clear, just r, c and d) to be, respectively, the number of distinct rows, columns and

diagonals (both forward and backward) containing vertices in S.

A paper by Burchett [9] contains the statement of a purported formula for a lower bound

on bor (Queen (n)). The proof of the bound relies on the assertion that, for a border dom-

inating set S of Queen (n), r + c + d ≤ 3|S| + 3 (note that the statement of this assertion

in the paper differs, due to differing notation). This assertion is false, as evidenced by the

border dominating set of Queen (14) in Figure 2.4, which has |S| = 12, r = c = 8 and d = 24,

giving r + c+ d = 40 = 3|S|+ 4.

Lemma 2.10 establishes a corrected version of the upper bound on r + c + d in [9]. The

incorrect upper bound r + c + d ≤ 3|S| + 3 was used by Burchett as part of a proof that

bor (Queen (n)) ≥ (2n − 5)/3 [9, p. 181]. The counterexample in Figure 2.4 invalidates the

proof of Burchett’s bound on bor (Queen (n)), but does not contradict the bound itself (so

it may still be possible to prove the bound using other methods). Theorem 2.11 contains a

revised bound on bor (Queen (n)) based on Lemma 2.10.



24

Figure 2.4: Counterexample of an assertion by Burchett in [9].

Lemma 2.10 (Corrected from Burchett [9, p. 181]). If S is a border dominating set of

Queen (n), then r(S) + c(S) + d(S) ≤ 3|S|+ 4.

Proof. Define an auxiliary graph A with vertex set S as follows.

Rule 1: If two vertices vi,j, vk,` ∈ S are diagonal or back-diagonal neighbours, add an

edge vi,jvk,` to A.

Rule 2: If two vertices vi,j, vk,j ∈ S are column neighbours and v`,j /∈ S for all i < ` < k,

add an edge vi,jvk,j to A.

Rule 3: If two vertices vi,j, vi,k ∈ S are row neighbours and vi,` /∈ S for all j < ` < k, add

an edge vi,jvi,k to A.

Vertices in S must lie along one of the four border segments of the board (top, bottom,

left, right). By Rule 2 above, all vertices in the same row will be connected by a path, and

by Rule 3 above, all vertices in the same column will be connected by a path. Therefore,

the graph A can have at most 4 components (since there will be at most one component per

border segment). The total number of edges in A is then at least |V (A)| − 4 = |S| − 4.

Let m1,m2,m3 count the number of edges created by each of the respective rules above.

Then m1 +m2 +m3 = |E(A)| ≥ |S| − 4. Observe that r(S) = |S| −m1, c(S) = |S| −m2 and

d(S) = |S| − m3. The inequality on m1,m2 and m3 above becomes r(S) + c(S) + d(S) =



25

4|S| − (m1 +m2 +m3) ≤ 4|S| − (|S| − 4) = 3|S|+ 4.

Theorem 2.11 (Corrected from Burchett [9, p. 181-182]). For n ≥ 1, bor (Queen (n)) ≥
2(n−3)

3
.

Proof. Let S be a minimum border dominating set of Queen (n). By Theorem 2.8, |S| ≤ n−2.

Let i1 and i2 be the indices of the first and last rows (respectively) which do not contain

a queen, and similarly let j1, j2 be the indices of the first and last columns which do not

contain a queen. Since |S| ≤ n − 2, all four indices must exist. In each of rows i1 and

i2, c vertices are column-dominated by queens in S, and in each of columns j1 and j2, r

vertices are row-dominated by queens in S. All remaining vertices in rows i1 and i2 and

columns j1 and j2 must be diagonally dominated. The total number of vertices which must

be diagonally dominated is

2(n− r) + 2(n− c)− 4

(where the −4 term accounts for the double-counting of the four squares on the overlap of

the rows and columns). Since all such vertices must be diagonally-dominated, and since each

of the d diagonals can dominate at most 2 vertices from rows i1 and i2 and columns j1 and

j2,

2d ≥ 2(n− r) + 2(n− c)− 4

giving

2(d+ r + c) ≥ 4n− 4

which implies that

r + c+ d ≥ 2n− 2



26

and applying the inequality r + c+ d ≤ 3|S|+ 4 from Lemma 2.10 gives

3|S|+ 4 ≥ 2n− 2

|S| ≥ 2n− 6

3
.

2.4 Kneser Graphs

For integers n and k such that n ≥ 1 and 0 ≤ k ≤ n, the Kneser graph Kneser (n, k)

has vertices corresponding to k-subsets of {1, 2, . . . , n} and edges between vertices whose

corresponding subsets are disjoint [30]. For some combinations of n and k, the domination

number γ (Kneser (n, k)) has been determined theoretically, but the value of γ (Kneser (n, k))

remains an open question in general, and recent results have used computational searches

to solve open cases [51]. For n ≤ 4, the domination number of Kneser (n, k) is known for all

0 ≤ k ≤ n. The smallest open case is currently Kneser (12, 5) [51].

Table 2.1 summarizes the known bounds and solved cases of the domination number of

some Kneser graphs with small n and k. The data in Table 2.1 is transcribed from [51] and

[31].

2.5 Covering Codes and Football Pools

Consider a sequence of n football matches. A form of betting on the matches is to place a

bet that a given sequence of outcomes (win, lose, or draw) will occur. When all matches

are over, the prize money is given to the bettor who predicted all matches correctly. If no

such bettor exists, then the money is given to the bettor who made one error, and then the

bettor who made two errors, and so on until a winner is found.



27

Table 2.1: Known bounds on the domination number of Kneser graphs.

n
k

2 3 4 5
4 3
5 3
6 3 10
7 3 7
8 3 7 35
9 3 7 26
10 3 6 15 126
11 3 5 15 66
12 3 4 12 37-56
13 3 4 10 23-39
14 3 4 9 16-31
15 3 4 8 15-27
16 3 4 7 12-22
17 3 4 7 11-17
18 3 4 6 11-15
19 3 4 6 11-14
20 3 4 5 11-12
21 3 4 5 11-12

The Football Pool Problem is to determine the number of bets needed to ensure that at

least one bet will have at most one error [41]. The number of bets needed to guarantee that

one bet will be completely accurate is 3n. To ensure that one bet will have at most one error,

the number of bets needed is an open question for n ≥ 6.

Let Q be an alphabet with |Q| = q. For non-negative integers n and r, a covering code

over Qn with radius r is a set C ⊆ Qn such that for all x = (x1, x2, . . . , xn) ∈ Qn, there exists

some c = (c1, c2, . . . , cn) ∈ C such that the Hamming distance d(x, c), which is defined to be

d(x, c) = |{i : xi 6= ci}|,

is at most r. For the purpose of finding codes, the alphabet Q can be assumed to be the

set Zq = {0, 1, . . . , q − 1}. The minimum size of a covering code of radius r over Znq is

denoted by Kr(n, q). Covering codes have applications in compression, telecommunications



28

and write-once memories [18]. The dual of a covering code problem is a packing problem,

which is equivalent to finding an error-correcting code.

The covering code problem can be stated in graph theoretic terms. For a given n, q and

r, define a graph Coder (n, q) with vertex set Znq and edge set

E(Gn,q) = {uv : u, v ∈ V (G) and d(u, v) ≤ r}.

A covering code of radius r over Znq is then equivalent to a dominating set of Coder (n, q).

Solutions to the football pool problem on n matches correspond to covering codes of

radius one over Zn3 , and the values K1(n, 3) give the minimum number of bets needed to

guarantee that one bet will have at most one error. Brink, in [8], proposed the Inverse

Football Pool Problem, which asks for the minimum number of bets needed to ensure that

one bet will be entirely wrong (that is, the outcome of every match is incorrectly predicted).

The inverse football pool problem is equivalent to finding a set C ⊆ Qn such that for every

x ∈ Qn, there is some c ∈ C such that d(x, c) = n. The size of a minimum solution to the

inverse football pool problem on n matches is denoted by T (n) in [8].

Table 2.2 gives the values of K1(n, 3) and T (n) for small values of n, and the best known

bounds for small open cases. The number of vertices in each covering code graph Code1 (n, 3)

is also given (note that the value of n is not equal to the number of vertices). The data

for K1(n, 3) is from [44], which aggregates results on covering codes, including unpublished

results. The data for T (n) is taken from [47].

The football pool problem has been the subject of a considerable body of computational

research. Among the most recent is the result that γ(Code1 (6, 3)) ≥ 71 by Linderoth,

Margot and Thain [48], who used a specialized integer programming solver to improve the

lower bound.

Another important sub-family of the covering code graphs are the hypercubes. The hyper-

cube of order n, denoted by Qn, is defined to be the graph Code1 (n, 2). Table 2.3 summarizes



29

n # Vertices Football (K1(n, 3)) Inverse Football (T (n))
1 3 1 2
2 9 3 3
3 27 5 5
4 81 9 8
5 243 27 12
6 729 71-73 18
7 2187 156-186 29
8 6561 402-486 44
9 19683 1060-1269 66-68

10 59049 2854-3645 99-104

Table 2.2: Solutions to the football pool problem and inverse football pool problem on
n = 1, 2, . . . , 10.

the known domination numbers of hypercubes, along with the best known bounds for small

open cases, with data taken from [44].

n |V (Qn)| γ(Qn)
1 2 1
2 4 2
3 8 2
4 16 4
5 32 7
6 64 12
7 128 16
8 256 32
9 512 62

10 1024 107-120
11 2048 180-192

Table 2.3: Domination numbers of hypercubes Qn for n = 1, . . . , 11.



30

(a) TG (3) (b) HR (3)

Figure 2.5: The triangle grid graph TG (3) and the hex rook graph HR (3).

2.6 Triangle Grid Graphs

For n ≥ 1, the triangle grid graph of order n, denoted TG (n), has vertex set V (TG (n)) =

{vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ i} and edge set

E(TG (n)) = {vi,jvi,j+1 : 1 ≤ i ≤ n, 1 ≤ j < i}

∪{vi,jvi+1,j : 1 ≤ i < n, 1 ≤ j ≤ i}

∪{vi,jvi+1,j+1 : 1 ≤ i < n, 1 ≤ j < i}.

Figure 2.5(a) shows the triangle grid graph of order 3. The definition used here is consistent

with Wagon [62] and with the Online Encylopedia of Integer Sequences (OEIS) entry for the

domination number of triangular grid graphs [59]. Some other sources use a slightly different

numbering scheme starting at n = 0. Intuitively, the graph TG (n) is a triangular lattice

with side length n.

DeMaio and Tran [20] investigate the domination and independence number of several

graphs derived from hexagonal chess. The graph used in [20] to model the behavior of the

king in hexagonal chess is identical to a triangle grid graph. Among other results, Demaio



31

and Tran [20] provide an upper bound

γ(TG (n)) ≤
⌈n

7

⌉
− 1 +

bn7 c∑
i=1

7i− 1

on the domination number of TG (n). However, this upper bound is substantially larger

than the number of vertices in TG (n) for all values of n. A conjectured closed form for the

domination number of TG (n) is given by Wagon [62].

Conjecture 2.12 (Wagon [62]). For n ≥ 14,

γ(TG (n)) =

⌊
n2 + 7n− 23

14

⌋

�

2.7 Hex Rook Graphs

For n ≥ 1, the hex rook graph of order n, denoted by HR (n), comprises a triangle grid graph

in which every vertex is adjacent to all vertices in the same horizontal, diagonal or back

diagonal line [62]. The term ‘hex rook’ is due to the graph modelling the possible moves of a

rook in hexagonal chess, as defined by Wagon [62]. There are various differing definitions of

the moves in hexagonal chess. For example, DeMaio and Tran [20], constrain rooks to move

only along horizontal lines, but define a queen in hexagonal chess to move along horizontal,

diagonal or back-diagonal lines, equivalent to the rook in Wagon’s definition. Figure 2.5(b)

shows the hex rook graph of order 3.

The discussion of hex rook graphs in [62] establishes a simple recursive upper bound on

γ(HR (n)), which is given in Lemma 2.13.

Lemma 2.13 (Wagon [62]). For n ≥ 1, γ(HR (n+ 2)) ≤ γ(HR (n))+1. Consequently, since



32

γ(HR (1)) = γ(HR (2)) = 1,

γ(HR (n)) ≤
⌈n

2

⌉
.

�

The value of γ(HR (n)) has been found by computational search for all n ≤ 20 [62, 58].

Due to the fact that γ(HR (7)) = 3 and γ(HR (n)) = 9, the recursive formulation of Lemma

2.13 gives an improved upper bound of

γ(HR (n)) ≤
⌊
n− 1

2

⌋

for all n ≥ 19 [62]. Table 2.4 gives the value of γ(HR (n)) for n ≤ 24. The values for n ≥ 21

are new contributions from this research and were computed with the unidom program

described in Chapter 6.

Table 2.4: Domination Numbers of Hex Rook Graphs. New results are in red; all other
results are from [58].

n 1 2 3 4 5 6 7 8 9 10 11 12
γ(HR (n)) 1 1 2 2 3 3 3 4 4 5 5 6

n 13 14 15 16 17 18 19 20 21 22 23 24
γ(HR (n)) 6 7 7 8 8 9 9 9 10 10 11 11

2.8 Cartesian Products of Cycles

The Cartesian product of two graphs G and H, denoted G � H, has vertex set V (G � H) =

{(u, v) : u ∈ V (G), v ∈ V (H)} and edges between vertices (u1, v1) and (u2, v2) if either

• u1 = u2 and v1v2 ∈ E(H), or

• v1 = v2 and u1u2 ∈ E(G).



33

One famous open problem which connects Cartesian products to dominating sets is Vizing’s

conjecture [7], which asserts that for any finite graphs G and H, γ(G � H) ≥ γ(G)γ(H).

Klavzar and Seifter [45] studied the domination number of the Cartesian products of cycle

graphs, and proved formulas for the domination number of certain products, which are

summarized in Theorems 2.14 and 2.15.

Theorem 2.14 (Klavzar and Seifter [45, p. 131-132]). Let n ≥ 4. Then,

γ(C3 � Cn) = n− bn/4c

γ(C4 � Cn) = n.

Theorem 2.15 (Klavzar and Seifter [45, p. 133]). Let n ≥ 5. Then if n ≡ 0 (mod 5),

γ(C5 � Cn) = n,

and if n ≡ 1, 2 or 4 (mod 5),

γ(C5 � Cn) = n+ 1.

For the experiments in Chapter 4, products of two n-cycles were used in the test dataset.

Data on the domination numbers of such graphs is available from the Online Encylopedia of

Integer Sequences (OEIS) [57]; the smallest value of n for which γ(Cn � Cn) is unknown is

n = 22 [57].

Computational methods for finding dominating sets may be valuable in the study of

Vizing’s conjecture; as Bresar et al. [7] note, progress on studying possible counterexamples

has been slow due to the difficulty of evaluating the domination number of graphs.



34

Chapter 3

Algorithms

This chapter describes several algorithms which find dominating sets of arbitrary input

graphs G. All of the algorithms are based on a common framework to allow meaning-

ful comparison between the recursive structure of the different algorithms without direct

comparison of running times. The algorithms can be employed either to find a minimum

dominating set of the input graph, with or without initial bounds on the domination number,

or to exhaustively generate all dominating sets of a given size.

Section 3.1 describes the common framework used by all of the algorithms in the rest

of the chapter. The framework uses a recursive backtracking search, which has running

time exponential in the number of vertices in the worst case. Section 3.2 describes an

implementation of the framework using a simple bounding condition based on the maximum

degree of the graph. Section 3.3 describes an implementation which uses a dynamic bounding

condition based on the number of undominated vertices which can be dominated by each

vertex. Section 3.4 describes an implementation using a different bounding condition which

was derived by examining the properties of dominating sets of queen graphs.



35

3.1 Backtracking Framework

Since the goal of this research was to compare different algorithmic approaches to finding

minimum dominating sets, it was necessary to define a common framework for all of the

tested algorithms to allow for a meaningful comparison. In practice, the performance of

an algorithm for a large-scale combinatorial search would likely be measured by its run-

ning time or memory consumption. However, metrics like running time are sensitive to

implementation-specific factors, such as the choice of data structures, and overhead intro-

duced by the programmer’s chosen code structure. Although the particulars of the imple-

mentation are important, the asymptotic behavior of the algorithm tends to depend more

on the size of the search tree, and algorithms which produce smaller search trees tend to be

more viable in the general case. Moreover, once an algorithm which produces the smallest-

possible search tree is found, implementation-specific details can be optimized to improve

its speed further.

To allow comparison between different backtracking algorithms, a common framework

algorithm was designed, to allow direct comparison between the search tree sizes for dif-

ferent methods. The framework specifies a recursive procedure to build a dominating set

of a graph by considering several choices for adding one vertex to the set at each recursive

step, and terminating branches of the tree which will never produce a smaller dominat-

ing set than the best candidate seen so far. The recursive component of the algorithm is

contained in the FindDominatingSet procedure in Framework 3.1. The parameters to

FindDominatingSet are

• The input graph G.

• A partial dominating set P .

• A set C ⊆ V (G) of candidate vertices.

• The best dominating set B found so far.



36

• An upper bound desired size on the size of the dominating set to find. If no set of

size desired size or smaller can be found, recursion returns.

For the initial call to FindDominatingSet, set P = ∅, C = V (G), B = V (G). To find

a minimum dominating set of the graph, desired size is set to |V (G)|. To decide if G has

a dominating set of size at most k, desired size is set to k.

Framework 3.1 Framework for a Backtracking Search

1: procedure FindDominatingSet(G, P, C, B, desired size)
2: if P is a dominating set then
3: if |P | < |B| then
4: Overwrite B with a copy of P
5: end if
6: return
7: end if
8: Compute a lower bound k on the size of a dominating set D
9: such that P ⊆ D ⊆ P ∪ C.

10: if k ≥ |B| or k > desired size then return

11: T ← ∅
12: v ← An undominated vertex of G
13: for each vertex u ∈ N [v] ∩ C do
14: T ← T ∪ {u}
15: FindDominatingSet(G, P ∪ {u}, C − T, B, desired size)
16: end for
17: end procedure

The main differences between the implementations studied in Sections 3.2 - 3.4 are con-

tained in the three unspecified aspects of the framework, which affect the size of the search

tree in different ways. There is a significant interplay between the three aspects, since the

bounding condition (line 10) may rely on the set of candidate vertices C to determine the

minimum size of a dominating set containing the current partial set P , and the set C may

in turn be affected by the choice of vertex to dominate (line 12) and the order in which

potential dominators are tried (in the loop on line 13).



37

3.1.1 Bounding Condition

The conditional on line 10 of the framework will terminate the branch of recursion if a lower

bound k on the size of a dominating set D containing the current partial set P is too large

to be a possible minimum. The framework does not describe how the bound k should be

computed. Since the conditional on line 10 is the only means by which the branch can be

terminated early, the bounding condition is the most critical component to optimizing the

size of the search tree. The purpose of the other two unspecified aspects of the framework,

described in Sections 3.1.2 and 3.1.3, is to increase the likelihood that the bounding condition

on line 10 fails and recursion returns.

3.1.2 Vertex Selection

At each recursive step, if the set P is not a dominating set, at least one vertex must be

added to P , and there must be at least one vertex v ∈ V (G) which is not dominated by

a vertex in P . The framework specifies that a particular undominated vertex v must be

chosen on line 12, and then dominated by adding one of its neighbours (or itself) to P before

continuing recursion. The choice of v can influence the ability of the algorithm to find a

small set quickly, and also affect whether the bounding conditions fail at a future recursive

step.

3.1.3 Neighbour Ordering

After an undominated vertex v has been chosen, each of the candidate vertices in N [v] is

tried as a dominator for v. Once a vertex u ∈ N [v] has been tried and the corresponding

recursive call returns, u ceases to be a candidate vertex for all future recursive calls below

the current level (the set T in the framework contains all vertices that have been excluded

as candidates). The order in which the vertices in N [v] are tried is not specified by the



38

framework, but can have a significant impact on the size of the search tree of the algorithm.

If a small dominating set is found on the first iteration of the loop on line 13, the recursive

branches created by future iterations may be able to terminate early. Additionally, with each

successive iteration of the loop, more candidate vertices are excluded, increasing the chance

that no viable dominating set can be found.

3.2 Bounding With Fixed Vertex Ordering

Bounding Strategy 3.1 gives a basic bounding condition for line 10 of Framework 3.1.

Bounding Strategy 3.1. Let G be a graph on n vertices and let ∆ be the maximum degree of

a vertex of G. If P ⊆ V (G) is a partial dominating set and |N [P ]| = q, then any dominating

set D such that P ⊆ D will have size at least

k = |P |+ n− q
∆ + 1

.

To use Bounding Strategy 3.1, it is necessary to track both the size of P and the size

of N [P ]. The maximum degree ∆ can be precomputed. Since Framework 3.1 stores both

|P | and |N [P ]| for other reasons (to track whether all vertices are dominated), the bound

can be evaluated very efficiently. Computing the value of k requires a constant number

of operations, and updates to the values of |P | and |N [P ]| require a constant number of

operations for each modification (addition/removal of a vertex) to P .

3.2.1 Implementation: Algorithm 3.2

Algorithm 3.2 contains pseudocode for an implementation of Framework 3.1 using Bounding

Strategy 3.1 as the bounding condition. The algorithm uses the following data structures.

• The input graph G is represented by an adjacency list structure, with the number of



39

vertices n and degree of each vertex stored separately. The vertices of the graph are

indexed starting at 0 and numbered v0, v1, v2, . . . , vn−1.

• The partial dominating set P and best known dominating set B are represented by

array-based lists. The size of each list is tracked separately (so the size can be used in

O(1) time).

• The value of ∆ is pre-computed and stored in an array.

• The set C of candidate vertices and the set N [P ] which contains all dominated vertices

are implemented as boolean arrays of n elements, where element i is true if and only

if vertex i is in the set.

Algorithm 3.2 chooses the lowest numbered undominated vertex vi to dominate at each

step. To dominate vi, each element of N [vi]∩C is considered as a dominator, in three groups:

first, vi itself is tried, then the undominated neighbours of vi, followed by the neighbours of

vi which are already dominated.

Undominated neighbours are iterated through before dominated neighbours as a heuristic,

to maximize the chance that the chosen dominator also dominates other vertices besides vi.

Within each group, neighbours are iterated through in reverse numerical order, again as a

heuristic, to take advantage of preprocessing which renumbers the vertices of the graph. For

example, if the vertices of the graph are numbered in ascending order of degree, then lower

degree vertices are chosen for domination first, while higher degree vertices are tried first as

dominators.

The recursive FindDominatingSet procedure in Algorithm 3.2 has all of the parameters

of the version in Framework 3.1, as well as the index i of the lowest numbered vertex that

has not been dominated by a previous level of recursion. Note that vi may be dominated

anyway (as a side effect of an earlier addition to P ), so Algorithm 3.2 may advance the value

of i to find an undominated vertex (this occurs in the loop on lines 9 - 11 of the pseudocode).



40

Algorithm 3.2 Backtracking Algorithm using Bounding Strategy 3.1

1: procedure FindDominatingSet(G, P, C, B, desired size, i)
2: n← |V (G)|
3: if |N [P ]| = n then
4: if |P | < |B| then
5: Overwrite B with a copy of P
6: end if
7: return
8: end if
9: while vi ∈ N [P ] do

10: i← i+ 1
11: end while
12: {Compute Bounding Strategy 3.1}
13: k ← |P |+ n−|N [P ]|

∆+1

14: if k ≥ |B| or k > desired size then return

15: F ← Empty stack
16: {Try vertex vi, if applicable}
17: if vi ∈ C then
18: Remove vi from C
19: FindDominatingSet(G, P ∪ {vi}, C, B, desired size, i+ 1)
20: Push i onto F
21: end if
22: {Try undominated neighbours of vi}
23: for each neighbour vj ∈ N [vi] do
24: if vj ∈ C and i 6= j and vj /∈ N [P ] then
25: Remove vj from C
26: FindDominatingSet(G, P ∪ {vj}, C, B, desired size, i+ 1)
27: Push j onto F
28: end if
29: end for
30: {Try dominated neighbours of vi}
31: for each neighbour vj ∈ N [vi] do
32: if vj ∈ C and i 6= j and vj ∈ N [P ] then
33: Remove vj from C
34: FindDominatingSet(G, P ∪ {vj}, C, B, desired size, i+ 1)
35: Push j onto F
36: end if
37: end for
38: while F is non-empty do
39: j ← Pop(F)
40: Add vj to C.
41: end while
42: end procedure



41

For the initial call to FindDominatingSet, i is set to zero and the other parameters

are set as indicated in Section 3.1 for the framework. Since the numbering of vertices is

determined by the structure of the adjacency list for the input graph G, any renumbering of

the graph is done before the FindDominatingSet procedure is initially called. Three dif-

ferent vertex ordering heuristics were evaluated in the experimental evaluation of Algorithm

3.2 in Section 4.3.

3.3 Domination Degree Algorithms

The neighbourhood N [P ] of a partial dominating set P contains all vertices dominated by

some vertex of P . For a vertex v ∈ V (G)−P , define the domination degree of v with respect

to P , denoted by DDP (v), to be the number of vertices in N [v] which are not dominated by

a vertex in P .

If P is not a dominating set of G, a lower bound on the size of a dominating set containing

every vertex in P can be constructed using the domination degree of all available vertices.

Observation 3.2 relates the domination degree of the vertices in V (G) − P to the size of a

dominating set created from P , and Bounding Strategy 3.3 formalizes the bound itself.

Observation 3.2. Let G be a graph on n vertices, and let C be a set of candidate vertices

for augmenting a partial dominating set P . Consider a dominating set D such that P ⊆

D ⊆ P ∪ C. Then, ∑
v∈D−P

DDP (v) ≥ |V (G)−N [P ]|.

�

Bounding Strategy 3.3. Let G be a graph on n vertices, and let C be a set of candidate

vertices for augmenting a partial dominating set P . Let k be the number of vertices which

are not dominated by P . Assume that the vertices of C are ordered u1, u2, ...u|C| such that

DDP (ui) ≥ DDP (ui+1) for i = 1, 2, . . . , |C|.



42

5 10 9 8 9 7 5

12 9 10 10 12 10 11 6

12 13 6 13 11 13 9 9

11 11 13 11 14 10 12 7

10 13 10 15 10 13 9 9

13 12 13 11 15 10 12 5

11 14 9 13 10 13 9 9

10 8 6 7 9 7 9

Figure 3.1: An 8× 8 board with two queens.

Then any dominating set D such that P ⊆ D ⊆ P ∪ C must contain at least |P | + q

vertices where q is the smallest integer such that

q∑
i=1

DDP (ui) ≥ k.

Figure 3.1 shows a sample configuration of an 8×8 board with two queens. Squares which

are dominated by either queen are highlighted in blue. For each square that does not contain

a queen, the domination degree is given in the center of the cell (cells containing queens have

a domination degree of zero). Since the board contains 26 undominated cells, and since

there are two cells with domination degree 15, Theorem 3.3 implies that a minimum of two

queens are needed to complete the dominating set (and, consequently, any dominating set

containing those two queens must contain at least 4 queens).

For an undominated vertex v ∈ V (G)−N [P ], define the candidate degree of v with respect

to C, denoted by CDC(v), to be the number of neighbours in N [v] which are members of

the candidate set C. Lemmas 3.4 and 3.5 formalize two simple properties of the candidate

degree of a vertex.

Lemma 3.4. Let G be a graph on n vertices and let C ⊆ V (G) be a set of candidate vertices



43

for augmenting a partial dominating set P ⊆ V (G). If there exists an undominated vertex

v ∈ V (G)−N [P ] with CDC(v) = 0, then there does not exist a dominating set D of G such

that D ⊆ P ∪ C.

�

Lemma 3.5. Let G be a graph on n vertices and let C ⊆ V (G) be a set of candidate

vertices for augmenting a partial dominating set P ⊆ V (G). Suppose v ∈ V (G) − N [P ] is

an undominated vertex such that CDC(v) = 1, and let w be the lone element of N [v] ∩ C.

Then, in any dominating set D ⊆ P ∪ C, w ∈ D.

�

Lemma 3.4 implies a new termination condition for the recursive search: if any vertex

has candidate degree zero, recursion can return, since no dominating set can be produced.

Lemma 3.5 gives a condition in which a vertex is forced to be added to the partial set

P to avert the stopping condition in Lemma 3.4. Intuitively, the candidate degree of an

undominated vertex v corresponds to the number of ways that v could be dominated by a

finished dominating set, and vertices with low candidate degrees are ‘at risk’ of having no

viable dominators. Therefore, candidate degree information can be incorporated into the

vertex selection rule of the backtracking algorithm (line 12 of Framework 3.1).

To use Bounding Strategy 3.3 for the bounding condition on line 10 of Framework 3.1, it is

necessary to know the multiset of domination degrees of all vertices in the graph. Similarly, to

use minimum or maximum candidate degree to choose an undominated vertex to dominate,

it is necessary to compute the candidate degree of each vertex. Both candidate degrees

and domination degrees may change between recursive calls, so it is necessary to recompute

at least some of the information as the algorithm progresses. One option is to completely

recompute all values at each step (for example, by iterating over all vertices to compute their

domination degree). Another option is to use a persistent data structure and make selective



44

updates as values change. Although the latter option may be intuitively appealing (since

unnecessary work seems to be avoided), the extra overhead of a complicated data structure

may outweigh the cost of the unnecessary recomputations when the recomputation is done by

a simple iterative process, especially in cases where a large number of values change between

steps.

For the algorithm described in this section, two data structures were used to maintain

the multiset of domination degrees and candidate degrees. Both data structures allow only

changed values to be updated at each step, but also try to minimize practical overhead to

compete with recomputation-based approaches. This research project did not profile the

performance of the recomputation-based method, and therefore there is no experimental

evidence to suggest that recomputation is inferior to the data structures used here. Experi-

mentally evaluating the various techniques is a topic for future research.

Section 3.3.1 describes the data structure used to maintain the multiset of domination de-

grees. The data structure used for candidate degrees, which could be considered an extension

of the domination degree structure, is described in Section 3.3.2.

3.3.1 Domination Degree Multiset

With respect to a partial dominating set P ⊆ V (G), the domination degrees of the vertices

of a graph G on n vertices with maximum degree ∆ will always lie in the range [0,∆ + 1].

To evaluate Bounding Strategy 3.3, it is necessary to maintain at least a partial ranking

of the domination degrees of the candidate vertices. The data structure described in this

section maintains a complete ranking of the domination degrees of all candidate vertices,

allowing the bound to be evaluated by iterating over the domination degrees in descending

order until the conditions of Bounding Strategy 3.3 have been met. Since the data structure

must be able to quickly update the ranking, it is also designed for the following operations

to be possible with little overhead.



45

• For any vertex vi, the domination degree DDP (vi) can be computed with a simple

lookup.

• When DDP (vi) changes, the ranked list can be updated by making local modifications

to a linked list.

• When a vertex vi ∈ C is removed from the candidate set C, its domination degree can

be easily removed from the ranked list.

• Similarly, when a vertex vi /∈ C is added to the candidate set C, its domination degree

can be easily added to the ranked list.

The data structure is based on a doubly linked list, and represents the multiset of dom-

ination degrees of vertices in the candidate set C. Any multiset M can be represented by

a set S of pairs (d, c) where d ∈ M and c is the multiplicity of d in M . Each node of the

linked list contains one (d, c) pair, with the elements of the list sorted in ascending order by

the value of d (the domination degree)1.

In practice, linked lists are useful data structures to represent sequences which require fast

iteration, insertion and removal of nodes, but not necessarily random access. By contrast, an

array (or vector) allows fast iteration and random access, but has worst-case linear running

time for insertion and removal of elements. Although linked list operations such as insertion

and removal may require constant time, the overhead associated with managing the list (such

as rearranging pointers and managing memory) can negate the advantages of using the list

for small sequences. As discussed in Chapter 1, in the context of this research project,

whether or not a technique is asymptotically optimal is not important if the technique has

unreasonably high overhead.

To address the performance issues that arise in practice for linked lists, the data structure

described in this section uses several optimizations to reduce overhead. First, dynamic

1The choice of ascending vs. descending order did not have any effect on the performance of the data
structure, since the list was doubly linked and therefore symmetric.



46

memory allocation (the malloc function in C and the new operator in C++) is not used.

Instead, the set of nodes is static, and only their contents and interconnections change

over the course of the recursive dominating set computation. Since the number of possible

domination degrees is bounded above by the value ∆ + 1, all of the nodes can be allocated

in advance. Second, to streamline the process of inserting and removing nodes, a circular

list is used, with a sentinel node representing the “beginning” and “end” (the next pointer

on the sentinel node refers to the first element of the list and the previous pointer of the

sentinel node refers to the last element of the list). Using a sentinel node instead of the

standard front and back (or head and tail) pointers allows the same simple code to be

used for all insertions and removals, instead of having special cases for inserting or removing

at the beginning or end. In the pseudocode listings later in this section, the value Sentinel

is used to refer to the sentinel node.

Each node in the list contains the following data elements.

• next and previous: Pointers to the next and previous nodes in the list (respectively).

• domination_degree: The domination degree value associated with the node.

• count: The number of vertices with this domination degree.

• candidate_count: The number of candidate vertices with this domination degree.

Since the node corresponding to the domination degree of a particular vertex is often

needed (for example, when the domination degree of that vertex changes), the data struc-

ture also maintains an array VertexDegreeNode of n pointers, with VertexDegreeNode[i]

pointing to the domination degree node for vertex vi. This also allows the domination degree

of a vertex to be looked up quickly. Similarly, since the node corresponding to a particular

domination degree may be needed (for example, when adjusting the domination degree of a

vertex), an array DegreeNodes of ∆ + 1 pointers is also maintained, with DegreeNodes[i]

pointing to the node for domination degree i.



47

For the purposes of Bounding Strategy 3.3, only vertices which are in the candidate set C

are needed. Since a vertex may be removed from C (thereby removing it from consideration

of the bound) and then later reinserted into C, the data structure continues to track the

domination degree of all vertices even when they are removed from C, but does not include

non-candidate vertices in the count field of each node.

The data structure defines the following operations.

Operation Specification

Init(G) Initialize the data structure for the graph G, with the domination

degree of each vertex vi set to deg(vi) + 1 and every vertex assumed

to be included in C.

AddCandidate(vi) Called when vertex vi is added to the candidate set C.

RemoveCandidate(vi) Called when vertex vi is removed from the candidate set C.

DominationDegree(vi) Return the domination degree of the vertex v.

Increment(v, C) Increase the domination degree of v by 1.

Decrement(v, C) Decrease the domination degree of v by 1.

MinToDominate(k) Evaluate Bounding Strategy 3.3 and return the minimum number q

of vertices needed to dominate k vertices.

Pseudocode for each operation (except Init, which is only executed once) is given in

Algorithm 3.3. For clarity, the procedures in the pseudocode use the values Sentinel

(referring to the sentinel node), VertexDegreeNode and DegreeNodes as global variables.

The pseudocode uses C-style notation to denote pointer dereferencing.

3.3.2 Candidate Degree Priority Queue

Algorithm 3.5 in the next section chooses an undominated vertex to dominate at each step

based on candidate degree (either a vertex with minimum or maximum candidate degree,

depending on the particular implementation). A vertex with minimum (or maximum) can-

didate degree can be found at each recursive step by iterating over all candidate vertices.



48

Algorithm 3.3 Operations of the Domination Degree Multiset Structure

1: procedure AddCandidate(vi)
2: Increment VertexDegreeNode[i]->candidate_count
3: end procedure

4: procedure RemoveCandidate(vi)
5: Decrement VertexDegreeNode[i]->candidate_count
6: end procedure

7: procedure DominationDegree(vi)
8: return VertexDegreeNode[i]->domination_degree

9: end procedure

10: procedure MinToDominate(k)
11: q ← 0
12: {Iterate backwards from the largest domination degree}
13: node← Sentinel.previous
14: while node 6= Sentinel do
15: {Compute the maximum number c of vertices which can be dominated by vertices}
16: {with the domination degree in the current node}
17: c← (node->domination_degree)·(node->candidate_count)
18: if k ≤ c then
19: return q + dk/node->domination_degreee
20: else
21: q ← q+ node->candidate_count

22: k ← k− c
23: end if
24: node← node->previous

25: end while
26: {If the Return statement above was not reached, it is not possible to dominate}
27: {the requested number of vertices.}
28: return ∞
29: end procedure



49

30: procedure Increment(vi, C)
31: old_node ← VertexDegreeNode[i]

32: old_deg ← old_node->domination_degree

33: new_deg ← old_deg+1

34: new_node ← DegreeNodes[new_deg]

35: old_count ← old_node->count

36: new_count ← new_node->count

37: if new count = 0 then
38: new_node->next ← old_node->next

39: new_node->previous ← old_node

40: old_node->next->previous ← new_node

41: old_node->next ← new_node

42: end if
43: VertexDegreeNode[i] ← new_node

44: Decrement old_node->count
45: Increment new_node->count
46: if vi ∈ C then
47: Decrement old_node->candidate_count
48: Increment new_node->candidate_count
49: end if
50: if old count = 0 then
51: new_node->previous ← old_node->previous

52: new_node->previous->next ← new_node

53: old_node->next ← NULL

54: old_node->previous ← NULL

55: end if
56: end procedure



50

57: procedure Decrement(vi, C)
58: old_node ← VertexDegreeNode[i]

59: old_deg ← old_node->domination_degree

60: new_deg ← old_deg-1

61: new_node ← DegreeNodes[new_deg]

62: old_count ← old_node->count

63: new_count ← new_node->count

64: if new count = 0 then
65: new_node->next ← old_node

66: new_node->previous ← old_node->previous

67: old_node->previous->next ← new_node

68: old_node->previous ← new_node

69: end if
70: VertexDegreeNode[i] ← new_node

71: Decrement old_node->count
72: Increment new_node->count
73: if vi ∈ C then
74: Decrement old_node->candidate_count
75: Increment new_node->candidate_count
76: end if
77: if old count = 0 then
78: new_node->next ← old_node->next

79: new_node->next->previous ← new_node

80: old_node->next ← NULL

81: old_node->previous ← NULL

82: end if
83: end procedure



51

This approach may be the fastest in some cases, either because the number of candidate

vertices is small or because of the low overhead of a simple iterative loop. An alternative

approach uses a data structure to track the candidate degree of each vertex as it changes

over the course of the algorithm, to allow vertices with minimum (or maximum) candidate

degree to be found without examining all candidate vertices. In particular, the requirements

of this problem align with a data structure called a priority queue.

A priority queue stores a collection of objects, each with a numerical parameter2 called a

key, and has two fundamental operations: Insert, which adds an element to the collection

and RemoveMin (or RemoveMax, although generally priority queues only allow removal

of minimum or maximum, not both) which removes and returns the element with the smallest

(or largest) key. A third operation, Adjust, which changes the key of some element already

in the collection, may also be defined.

When the objects in the priority queue correspond to vertices in a graph (and are in-

dexed 0, 1, . . . , n, using a heap to implement the priority queue results in all three operations

requiring O(log n) time: an array-based heap is used, combined with a table that maps each

vertex index to its current index in the heap (to allow easy adjustment of keys). However,

although the asymptotic running time of the heap operations is efficient, the heap opera-

tions are relatively high-overhead (and in particular, require a large number of conditional

branches, which are likely to slow down modern processors). Heaps are not the only option

for implementing priority queues, and for this task, a linked-list based priority queue was

designed, where most operations require constant time and have relatively low overhead.

The domination degree multiset structure in Section 3.3.1 maintains the domination

degrees of all vertices in the graph in ascending order, to allow Bounding Strategy 3.3 to

be computed quickly. It is not necessary to maintain any kind of ranking of vertices to

be able to choose vertices with minimum or maximum candidate degree. However, the

2In general, any totally ordered quantity can be used (such as strings under lexicographical order), but
for the purposes of this section, numerical keys are assumed.



52

domination degree multiset structure can be adapted to implement a priority queue which

tracks candidate degree efficiently.

The candidate degree priority queue is a linked list multiset data structure (tracking

candidate degree instead of domination degree) in which each node of the list corresponds

to a particular candidate degree and maintains a count of how many vertices currently have

that candidate degree, as well as a set of all undominated vertices with that candidate degree.

The set of vertices is represented by a circular linked list (in which a sentinel node marks the

beginning and end of the list). As in the domination degree structure, the list is in ascending

order (with the lowest candidate degree at the first node).

Each node in the candidate degree list (a CandidateDegreeNode) contains the following

data elements.

• next and previous: Pointers to the next and previous nodes in the list (respectively).

• candidate_degree: The candidate degree value associated with the node.

• count: The number of vertices with this candidate degree.

• undominated_count: The number of undominated vertices with this candidate degree.

• undominated_list_sentinel: Sentinel node for the list of undominated vertices.

The nodes in the undominated list for each candidate degree (VertexNode) have the

following data elements.

• next and previous: Pointers to the next and previous nodes in the list (respectively).

• index: The index of the vertex corresponding to this node.

• degree_node: A pointer to the CandidateDegreeNode currently associated with this

vertex.

• is_dominated: Boolean value indicating whether this vertex is currently dominated.



53

As in the domination degree multiset, several arrays of pointers are maintained to allow

easy lookup.

• VertexNodes: An array of n pointers, mapping each vertex index to its unique VertexNode

• DegreeNodes: An array of ∆ + 1 pointers, mapping each candidate degree value to the

corresponding candidate degree node.

The candidate degree priority queue data structure defines the following operations. Note

that the GetMinUndominated and GetMaxUndominated find and return vertices with

minimum or maximum candidate degree, but do not remove these vertices from the candidate

set.

Operation Specification

Init(G) Initialize the data structure for the graph G, with the candidate

degree of each vertex vi set to deg(vi)+1 and every vertex assumed

to be included in C.

Dominate(vi) Called when vertex vi is dominated (and was not previously dom-

inated).

Undominate(vi) Called when vertex vi is no longer dominated (and was previously

dominated).

CandidateDegree(vi) Return the candidate degree of the vertex vi.

Increment(vi, C) Increase the candidate degree of vi by 1.

Decrement(vi, C) Decrease the candidate degree of vi by 1.

GetMinUndominated() Return the index of an undominated vertex with minimum candi-

date degree, or −1 if no such vertex exists.

GetMaxUndominated() Return the index of an undominated vertex with maximum candi-

date degree, or −1 if no such vertex exists.

Pseudocode for each operation (except Init, which is only executed once) is given in

Algorithm 3.4. Two helper functions SpliceIn and SpliceOut, which manage the insertion

and removal (respectively) of nodes into the lists of undominated vertices, are also given.



54

Algorithm 3.4 Operations of the Candidate Degree Priority Queue Structure

1: procedure CandidateDegree(vi)
2: return VertexNodes[i]->degree_node->candidate_degree

3: end procedure

4: procedure SpliceIn(vertex node)
5: degree_node ← vertex_node->degree_node

6: {Insert the vertex node at the end of the list of undominated vertices}
7: vertex_node->next ← degree_node->undominated_list_sentinel

8: vertex_node->previous← degree_node->undominated_list_sentinel->previous

9: vertex_node->next->previous ← vertex_node

10: vertex_node->previous->next ← vertex_node

11: end procedure

12: procedure SpliceOut(vertex node)
13: vertex_node->next->previous ← vertex_node->previous

14: vertex_node->previous->next ← vertex_node->next

15: vertex_node->next ← NULL

16: vertex_node->previous ← NULL

17: end procedure

18: procedure Dominate(vi)
19: vertex_node ← VertexNodes[i]

20: vertex_node->is_dominated ← True
21: Decrement vertex_node->degree_node->undominated_count
22: SpliceOut(vertex node)
23: end procedure

24: procedure Undominate(vi)
25: vertex_node ← VertexNodes[i]

26: vertex_node->is_dominated ← True
27: Increment vertex_node->degree_node->undominated_count
28: SpliceIn(vertex node)
29: end procedure



55

30: procedure Increment(vi, C)
31: vertex_node ← VertexNodes[i]

32: old_degree_node ← vertex_node->degree_node

33: old_deg ← old_degree_node->domination_degree

34: new_deg ← old_deg+1

35: new_degree_node ← DegreeNodes[new_deg]

36: old_count ← old_degree_node->count

37: new_count ← new_degree_node->count

38: if new count = 0 then
39: new_degree_node->next ← old_degree_node->next

40: new_degree_node->previous ← old_degree_node

41: old_degree_node->next->previous ← new_degree_node

42: old_degree_node->next ← new_degree_node

43: end if
44: Decrement old_degree_node->count
45: if vertex node->is dominated = False then
46: {If this vertex is undominated,}
47: {remove it from the undominated list of the old degree node}
48: SpliceOut(vertex node)
49: Decrement old_degree_node->undominated_count
50: end if
51: vertex_node->degree_node ← new_degree_node

52: if vertex node->is dominated = False then
53: {If this vertex is undominated,}
54: {add it to the undominated list of the new degree node}
55: SpliceIn(vertex node)
56: Increment new_degree_node->undominated_count
57: end if
58: Increment new_degree_node->count
59: if old count = 0 then
60: new_degree_node->previous ← old_degree_node->previous

61: new_degree_node->previous->next ← new_degree_node

62: old_degree_node->next ← NULL

63: old_degree_node->previous ← NULL

64: end if
65: end procedure



56

66: procedure Decrement(vi, C)
67: vertex_node ← VertexNodes[i]

68: old_degree_node ← vertex_node->degree_node

69: old_deg ← old_degree_node->domination_degree

70: new_deg ← old_deg+1

71: new_degree_node ← DegreeNodes[new_deg]

72: old_count ← old_degree_node->count

73: new_count ← new_degree_node->count

74: if new count = 0 then
75: new_degree_node->next ← old_degree_node

76: new_degree_node->previous ← old_degree_node->previous

77: old_degree_node->previous->next ← new_degree_node

78: old_degree_node->previous ← new_degree_node

79: end if
80: Decrement old_degree_node->count
81: if vertex node->is dominated = False then
82: {If this vertex is undominated,}
83: {remove it from the undominated list of the old degree node}
84: SpliceOut(vertex node)
85: Decrement old_degree_node->undominated_count
86: end if
87: vertex_node->degree_node ← new_degree_node

88: if vertex node->is dominated = False then
89: {If this vertex is undominated,}
90: {add it to the undominated list of the new degree node}
91: SpliceIn(vertex node)
92: Increment new_degree_node->undominated_count
93: end if
94: new_degree_node->count ← new_degree_node->count +1
95: if old count = 0 then
96: new_degree_node->next ← old_degree_node->next

97: new_degree_node->next->previous ← new_degree_node

98: old_degree_node->next ← NULL

99: old_degree_node->previous ← NULL

100: end if
101: end procedure



57

102: procedure GetMinUndominated( )
103: degree_node ← Sentinel->next
104: while degree node 6= Sentinel do
105: if degree node->undominated count > 0 then
106: return degree_node->undominated_list_sentinel->next->index

107: end if
108: degree_node ← degree_node->next

109: end whilereturn −1
110: end procedure

111: procedure GetMaxUndominated( )
112: degree_node ← Sentinel->previous
113: while degree node 6= Sentinel do
114: if degree node->undominated count > 0 then
115: return degree_node->undominated_list_sentinel->next->index

116: end if
117: degree_node ← degree_node->previous

118: end whilereturn −1
119: end procedure



58

3.3.3 Implementation: Algorithm 3.5

Algorithm 3.5 gives pseudocode for an implementation of the Framework using the domi-

nation degree-based Bounding Strategy 3.3 as the bounding condition and using candidate

degrees to choose vertices to dominate. When a vertex v is chosen to dominate, the neigh-

bours of v are ranked by domination degree using a linear time bucket sort. An extra

stopping condition, based on Lemma 3.4, which ends the branch of recursion if any vertex

has candidate degree zero, has also been included.

The candidate degree priority queue structure used to track candidate degrees allows

fast selection of a vertex with either minimum or maximum candidate degree to dominate.

Intuitively, choosing vertices with minimum candidate degree to dominate will help to pre-

vent the conditions of Lemma 3.4 from being met and therefore prevent the recursive branch

from being terminated. However, it may be desirable to make ‘bad’ choices for the vertex

v to dominate, since hastening the termination of the branch may improve the computation

speed. As a result, it is not immediately clear whether a minimum or maximum candidate

degree vertex should be chosen as the next vertex v to dominate. The pseudocode in Algo-

rithm 3.5 calls a function ChooseNextVertex on line 53. Two different implementations

of ChooseNextVertex were programmed: one which chooses a vertex with minimum

candidate degree and one which chooses a vertex with maximum candidate degree. The

experimental results in Section 4.4 contain data for both implementations.

Similarly, once a vertex v is chosen as the next vertex to dominate, the candidate neigh-

bours of v are added to the set in either ascending or descending order of domination degree.

Using neighbours with high domination degree first is a logical heuristic, since doing so will

maximize the number of additional vertices which are dominated. However, as with the

vertex selection rule, the pseudocode is not specific about the particular ordering used, and

the resolution is left to the experimental results in Section 4.4.

The domination degree multiset (Section 3.3.1) and candidate degree priority queue (Sec-



59

tion 3.3.2) data structures are used in Algorithm 3.5 and identified by DDMS and CDPQ,

respectively (using object-oriented notation to refer to their operations). The pseudocode

in Algorithm 3.5 is an implementation of Framework 3.1, but for clarity is split into three

procedures: The FindDominatingSet procedure, which implements most of the frame-

work’s structure, and two helper functions AddVertex (for recursing on the case where a

particular vertex is added to the set) and RestoreCandidate (for adding a vertex back

to the candidate set before recursion returns).

Algorithm 3.5 Backtracking Algorithm using Bounding Strategy 3.3

1: procedure AddVertex(G, P, C, B, desired size, F, j)
2: if vj /∈ C then
3: return
4: end if
5: Push j onto F
6: Remove vj from C
7: DDMS.RemoveCandidate(vj)
8: force stop← false

9: for each neighbour vk ∈ N [vj] do
10: if vk /∈ N [P ] then
11: CDPQ.Dominate(vk)
12: end if
13: {Decrement the candidate degree of vk}
14: CDPQ.Decrement(vk)
15: if CDPQ.CandidateDegree(vk) = 0 then
16: force stop← true

17: end if
18: {If vj is undominated, decrement the domination degree of vk}
19: if vj /∈ N [P ] then
20: DDMS.Decrement(vk)
21: end if
22: end for
23: Add vj to P
24: FindDominatingSet(G, P, C, B, desired size)
25: Remove vj from P
26: return force stop

27: end procedure



60

28: procedure RestoreCandidate(G, P, C, B, desired size, j)
29: Add vj to C
30: DDMS.AddCandidate(vj)
31: for each neighbour vk ∈ N [vj] do
32: if vk /∈ N [P ] then
33: CDPQ.Undominate(vk)
34: end if
35: {Decrement the candidate degree of vk}
36: CDPQ.Increment(vk)
37: {If vj is now undominated, increment the domination degree of vk}
38: if vj /∈ N [P ] then
39: DDMS.Increment(vk)
40: end if
41: end for
42: end procedure

43: procedure FindDominatingSet(G, P, C, B, desired size)
44: n← |V (G)|
45: if |N [P ]| = n then
46: if |P | < |B| then
47: Overwrite B with a copy of P
48: end if
49: return
50: end if
51: k ← MinVerticesNeeded(G, P, C)
52: if k ≥ |B| or k > desired size then return

53: v ← ChooseNextVertex(G, P, C)
54: NeighbourList← N [v]
55: Sort NeighbourList by domination degree
56: F ← Empty stack
57: for each vertex vj in NeighbourList do
58: if vj ∈ C then
59: Remove vj from C
60: force stop←FindDominatingSet(G, P ∪ {u}, C, B, desired size)
61: Push j onto F
62: if force stop = true then
63: Break
64: end if
65: end if
66: end for
67: while F is non-empty do
68: j ← Pop(F)
69: RestoreCandidate(G, P, C, B, desired size, j)
70: end while
71: end procedure



61

14 10 9 7 9 7 10 8 11 13

10 12 8 7 8 7 10 9 11 10

10 6 11 5 3 10 8 7 5

9 11 6 10 8 7 12 7 8 8

11 11 9 6 13 10 12 5 8 9

8 8 7 7 9 8 5 6 6

10 9 8 8 9 10 2 4 6

10 11 11 7 8 6 10 9 7 8

14 15 10 7 9 9 11 6 11 9

15 12 10 7 9 7 10 9 8 12

Figure 3.2: A 10× 10 board with three queens.

3.4 Max Dominator Degree Algorithms

A more advanced bounding condition was devised by studying the structure of dominating

sets of queen graphs and experimenting with different configurations of queens using an

interactive program. The condition itself is applicable to general graphs, but has a particular

advantage for queen graphs. Consider the configuration of queens on the 10×10 board shown

in Figure 3.2. The highlighted pink square is undominated. Including the pink square,

the board contains 29 undominated squares. Since the board contains two squares with

domination degree 15, Bounding Strategy 3.3 implies that at least two queens are needed

to complete the dominating set. However, the neighbourhood of the pink square (outlined

in red) contains squares with domination degree at most 13, and at least one neighbour

of the pink square must be added to the dominating set to dominate the pink square.

Therefore, a vertex of domination degree at most 13 must be added to the dominating set,

and consequently, it is not possible to cover all remaining undominated vertices with only

two additional queens.

Let P be a partial dominating set and let C be a a set of candidate vertices for augmenting



62

P . For an undominated vertex v ∈ V (G)−N [P ], define the max dominator degree of v with

respect to P and C, denoted by MDDP,C(v), to be the maximum domination degree of a

candidate vertex in the closed neighbourhood of v. If an undominated vertex v has a max

dominator degree k, then for any dominating set D such that P ⊆ D ⊆ P ∪ C, there must

exist a vertex u ∈ C which dominates v and has DDP (u) ≤ k. The vertex u may also

dominate other vertices whose max dominator degree is at most k.

Bounding Strategy 3.6 relates the max dominator degree of each vertex with respect to

P and C to the structure of a dominating set produced from P .

Bounding Strategy 3.6. Let C be a set of candidate vertices for augmenting a partial

dominating set P . Let k be the minimum over all undominated vertices v of MDDP,C(v).

Then any dominating set D such that P ⊆ D ⊆ P ∪ C must contain at least one vertex

u ∈ C such that DDP (u) ≤ k.

Proof. Let v be a vertex undominated by P such that MDDP,C(u) = k, and let D be a

dominating set such that P ⊆ D ⊆ P ∪C. Let U = {u ∈ D : v ∈ N [u]} be the set of vertices

in D which dominate v. Since v is not dominated by any vertex of P , U ⊆ C, and since v

must be dominated by at least one vertex, |U | ≥ 1.

Since MDDP,C(v) is defined to be the minimum of DDP (u) for every candidate neighbour

u of v, each vertex in u ∈ U must have DDP (u) ≥ MDDP,C(v) = k. Therefore D must

contain at least one vertex with domination degree at most k.

Bounding Strategy 3.6 can be applied to yield a bound on the size of a dominating set

produced from P with candidate set C using the observation that in the best case, a vertex

with domination degree k will be added to the dominating set and will, in the worst case,

cover the k vertices with the smallest max dominator degrees. If the undominated vertices

(in the set V (G)−N [P ]) are ranked by their max dominator degrees in a sequence

v1, v2, . . . , vk



63

where MDDP,C(vi) ≤MDDP,C(vi+1) for 1 ≤ i ≤ k−1, then a lower bound on the number of

vertices needed to complete P into a dominating set can be computed with the pseudocode

given in Algorithm 3.6.

Algorithm 3.6 MDD-based bound on the number of vertices needed to complete a domi-
nating set.

1: procedure MinVerticesNeeded(G, P, C)
2: v1, v2, . . . , vk ← Vertices in V (G)−N [P ], ranked by max dominator degree.
3: i← 1
4: count← 0
5: while i ≤ k do
6: count← count + 1
7: i← i+ MDDP,C(vi)
8: end while
9: return count.

10: end procedure

The new MDD-based bounding condition is used to as the basis of another implemen-

tation of Framework 3.1, using the domination degree-based implementation of Algorithm

3.5 as a starting point. Since the MDD bounding condition requires a ranking of candi-

date vertices by max dominator degree, a data structure was developed to maintain such a

ranking between different levels of recursion. Section 3.4.1 describes the new data structure.

Pseudocode for the finished backtracking algorithm is given as Algorithm 3.7 in Section 3.4.2.

3.4.1 MDD Ranking Data Structure

Since the recursive structure of the backtracking algorithm ensures that vertices are added to

and removed from the dominating set according to a last-in-first-out ordering, it is possible

to use a stack to save some of the changes made to parameters, including max dominator

degree, at each recursive step. Recursion allows such changes to be saved and restored easily,

since, in most algorithms, it is sufficient to make a copy of the relevant information before

recursing, then restore the information from the copy when recursion returns.



64

As discussed in Section 3.3.1 in the context of the domination degree multiset structure,

there are two competing options for computing parameters like MDD that may change

between levels of recursion. Recomputing the entire set of MDD values at each step is one

option, and has the benefit of relatively low overhead, but may perform unnecessary work

(since the MDD value of some vertices may not have changed since the last recomputation).

Another option is to maintain the set of MDD values in a data structure that allows selective

updates, at the cost of potentially higher overhead. This section describes a practical data

structure to reduce MDD recomputation and allow efficient updates of MDD values as the

partial dominating set P changes. For some classes of graphs, particularly those in which

the maximum distance between any two vertices is small, this data structure will likely be

slower than a complete recomputation, since the number of vertices whose MDD changes at

each step may be large and the added overhead of the data structure is significant compared

to a simple loop in such cases. For example, any two vertices vi,j and vk,` in a queen graph

are connected by a path of length at most 2.

In Algorithm 3.7, MDD values for vertices can change under the following four cir-

cumstances. Note that the conditions below assume that vertices are removed from the

dominating set in a reverse order to that in which they were added.

1. A vertex u is added to the partial dominating set P , all of u’s neighbours are marked

as dominated, and the MDD of vertices at distance up to 3 from u may change.

2. A vertex u is removed from the partial dominating set, the MDD values of vertices at

distance up to 3 from u revert to their values before u was added to the dominating

set.

3. After a vertex u is removed from the partial dominating set, it is removed from the

candidate set C to prevent it from being considered for the dominating set by any

future iterations of the algorithm. In this case, if u is a max dominator of any vertex



65

v, the MDD of v may change since u is no longer viable as a max dominator.

4. Before recursion returns, all vertices which have been removed from C during that

call to FindDominatingSet are added back to C (with the most recently removed

vertices added back first). As a result, for all vertices u which were removed from

C, the MDD values of the neighbours of u are restored to their values before u was

removed from C.

By using a stack to save the modified values in cases 1 and 3, cases 2 and 4 can be

implemented by popping the modified values from the stack and restoring them. The

MDDRanking data structure tracks the MDD of every uncovered vertex v ∈ V (G)−N [S],

and contains the following operations.

Operation Specification

Init(G) Initialize for the graph G, assuming that P = ∅ and C = V (G).

AddDominator(v) Update the MDD of each vertex to accommodate v being added

to P .

RemoveDominator(v) Inverse of AddDominator: Revert the MDD of each vertex to

its state before v was added to P .

ExcludeDominator(v) Update the MDD of each vertex to accommodate v being re-

moved from C and P .

UnexcludeDominator(v) Inverse of ExcludeDominator: Revert the MDD of each ver-

tex to its state before v was removed from C and P .

GetMDD(v) Return the MDD of vertex v.

MinVerticesNeeded(S, F ) Return the minimum number of vertices in C which must be

added to P to form a dominating set.

The MDDRanking structure uses four data structures internally:

• An array MDD stores the current MDD of each vertex vi.



66

• An array MDD counts tracks the number of vertices with each MDD (that is, element

MDD counts[i] contains the number of vertices with MDD i).

• A stack ST whose elements are sets which contain tuples of the form (v, old MDD). Each

set on the stack contains the set of vertices (and their old MDD values) modified by a

single call to AddDominator or ExcludeDominator.

The Init operation sets the initial MDD of each vertex v to

max
u∈N [v]

(deg(u) + 1) .

The Init operation requires Θ(|V (G)|+ |E(G)|) operations in the worst case, but this is of

little significance to the overall performance of the algorithm since initialization is only done

once. The GetMDD operation can be implemented with only a table lookup, since the MDD

of each vertex is stored. The MinVerticesNeeded operation is equivalent to Algorithm

3.6, except that sorting the vertices by MDD (line 2 of Algorithm 3.6) is unnecessary since

the MDD_counts array in the data structure maintains the ranking persistently.

3.4.2 Implementation: Algorithm 3.7

As with the domination degree-based approach in Algorithm 3.5, the extra information

which is maintained to evaluate the MDD-based bounding condition allows refinements to

the vertex selection rule and the ranking of neighbours during the backtracking algorithm.

Algorithm 3.7 contains pseudocode for a backtracking algorithm based on Framework 3.1

which uses Bounding Strategy 3.6 as the bounding condition.

Algorithm 3.7 is similar to Algorithm 3.5, except that the DDMS structure (which tracks

domination degrees) has been removed and a MDDRanking structure is used instead, in

keeping with the new bounding condition. The algorithm still tracks the candidate degree

of every vertex with a candidate degree priority queue structure (see Section 3.3.2) called



67

CDPQ.

Since a ranking of vertices by both MDD (via the MDDRanking) and candidate de-

gree (via the CDPQ structure) is available, there are more options for the vertex selection

rule. As with Algorithm 3.5, the selection of an undominated vertex is delegated to a func-

tion ChooseNextVertex, which is not specified. In the experimental testing in Section

4.5, four different vertex selection rules were tested: minimum candidate degree, maximum

candidate degree, minimum MDD and maximum MDD.

Although a ranking of vertices by domination degree is not maintained, the domination

degree of each vertex is still tracked, allowing the neighbour ranking step to continue to use

domination degree as in Algorithm 3.5.



68

Algorithm 3.7 Backtracking Algorithm using Bounding Strategy 3.6

1: procedure AddVertex(G, P, C, B, desired size, F, j)
2: if vj /∈ C then
3: return
4: end if
5: Push j onto F
6: Remove vj from C
7: force stop← false

8: for each neighbour vk ∈ N [vj] do
9: if vk /∈ N [P ] then

10: CDPQ.Dominate(vk)
11: end if
12: {Decrement the candidate degree of vk}
13: CDPQ.Decrement(vk)
14: if CDPQ.CandidiateDegree(vk) = 0 then
15: force stop← true

16: end if
17: end for
18: Add vj to P
19: MDDRanking.AddDominator(vj)
20: FindDominatingSet(G,P,C,B, desired size)
21: MDDRanking.RemoveDominator(vj)
22: Remove vj from P
23: MDDRanking.ExcludeDominator(vj)
24: return force stop

25: end procedure

26: procedure RestoreCandidate(G, P, C, B, desired size, j)
27: MDDRanking.UnexcludeDominator(vj)
28: Add vj to C
29: for each neighbour vk ∈ N [vj] do
30: if vk /∈ N [P ] then
31: CDPQ.Undominate(vk)
32: end if
33: {Increment the candidate degree of vk}
34: CDPQ.Increment(vk)
35: end for
36: end procedure



69

37: procedure FindDominatingSet(G, P, C, B, desired size)
38: n← |V (G)|
39: if |N [P ]| = n then
40: if |P | < |B| then
41: Overwrite B with a copy of P
42: end if
43: return
44: end if
45: k ← MinVerticesNeeded(G, P, C)
46: if k ≥ |B| or k > desired size then return

47: v ← ChooseNextVertex(G, P, C)
48: NeighbourList← N [v]
49: Sort NeighbourList by domination degree
50: F ← Empty stack
51: for each vertex vj in NeighbourList do
52: if vj ∈ C then
53: Remove vj from C
54: force stop←FindDominatingSet(G, P ∪ {u}, C, B, desired size)
55: Push j onto F
56: if force stop = true then
57: Break
58: end if
59: end if
60: end for
61: while F is non-empty do
62: j ← Pop(F)
63: RestoreCandidate(G, P, C, B, desired size, j)
64: end while
65: end procedure



70

Chapter 4

Experimental Evaluation of

Domination Algorithms

This chapter contains the results of several large-scale experimental comparisons of the dif-

ferent implementations of the backtracking algorithms based on Framework 3.1. The over-

arching goal of the experiments was to gather data that would lead to a small number of

high performance solvers for the optimization problem of finding a minimum dominating set

of an arbitrary graph. As a control, and to verify the results of the new algorithms, the dom-

inating set solver in the SageMath suite [1] was also profiled. To measure the performance

of each implementation and its variants, it was necessary to profile the performance of each

variant on a wide selection of graphs, sampled from a variety of graph families.

Following the discussion in Chapter 1 about the different ways to characterize ‘perfor-

mance’ of an algorithm, and how analytical asymptotic measurements (even of expected-

case running time) can sharply depart from realistic cases in exponential-time searches, the

experiments in this chapter were designed to measure practical performance, with several

precautions taken to ensure that the results would speak to the general performance of the

various algorithms tested.



71

A total of 51 different variants on Framework 3.1 were each run on a total of 550 input

graphs for up to 2 hours (7200 seconds) each. The huge volume of data collected from

these experiments forms the core of the empirical results of this thesis. The analysis in this

chapter contains comparisons of the variants within their broad categories (corresponding to

the three primary bounding methods described in Chapter 3), an overall comparison of all

variants based on running time and call tree size, and a comparison of the variants with the

best running time for each graph against the SageMath dominating set solver [1] in Section

4.7.

Since the goal of these experiments is to produce a high performance general solver for

the dominating set optimization problem (with no initial conditions such as a known upper

bound on γ(G)), the experimental data in this chapter focuses exclusively on that problem.

Other uses of the dominating set algorithms, such as exhaustively generating all dominating

sets of a given size, or finding a smallest dominating set within a given range of sizes (for

example, using a known upper bound as the starting point of the computation), are not

covered by this data. In the context of Framework 3.1, this entails setting the upper bound

value of desired size to |V (G)| for every input graph.

Section 4.1 describes the base input dataset used for the experiments. Section 4.2 details

the experiment setup, including measures taken to mitigate the effect of ‘luck’ on an algo-

rithm’s performance by randomizing inputs. The variants of Framework 3.1 presented in

Chapter 3 are grouped into three categories: variants using a fixed vertex ordering (Section

3.2), variants using domination degree for bounding and to choose vertices (Section 3.3)

and variants which use max dominator degree for bounding and to choose vertices (Section

3.4). Accordingly, detailed results and analysis for this series of experiments are presented

separately for each category. Results for three variants using fixed vertex ordering (based

on Algorithm 3.2) are presented in Section 4.3, results for 16 variants using domination de-

gree (based on Algorithm 3.5) are presented in Section 4.4 and results for 32 variants using



72

max dominator degree (based on Algorithm 3.7) are presented in Section 4.5. Section 4.6

contains a comparison of the best variants within each category for each graph, and Section

4.7 compares the best Framework 3.1-based algorithm against the SageMath solver. Finally,

Section 4.8 uses the experimental data to choose several high performance representative

algorithms.

4.1 Input Graph Dataset

The set of input graphs for these experiments consists of several collections of graphs drawn

from various graph families. The collections were chosen to meet the following criteria.

• Each collection is taken from an infinite family of graphs for which there are open

questions regarding the domination number.

• The domination number of graphs in the collection can be found in a reasonable amount

of time by at least one of the tested algorithms, but the graphs are ‘hard’ enough that

running time differences are significant.

• Published data is available on the domination numbers of known cases, to verify the

results of the algorithms.

• The different collections span a range of edge densities, from relatively sparse to rela-

tively dense graphs.

• All of the graphs are connected, since a minimum dominating set of a disconnected

graph can be found by combining minimum dominating sets of each component.

To that end, the input dataset includes a selection of Queen graphs, Kneser graphs,

Knight graphs, Covering Code graphs, Triangle Grid graphs, Hex Rook graphs and Cartesian



73

products of cycles, as described in Chapter 2. Table 4.1 lists the complete set of graphs

chosen, along with some of their graph-theoretic parameters.

Table 4.1: Parameters of the graphs used as inputs for the optimization experiment.

Graph n m ∆ γ
Cartesian Products of Cycles
C8 � C8 64 128 4 16
C9 � C9 81 162 4 18
C10 � C10 100 200 4 20
C11 � C11 121 242 4 27
C12 � C12 144 288 4 32
C13 � C13 169 338 4 38
C14 � C14 196 392 4 42
C15 � C15 225 450 4 45

Covering Code Graphs
Code1 (2, 6) 64 192 6 12
Code2 (2, 6) 64 672 21 4
Code3 (2, 6) 64 1312 41 2
Code1 (2, 7) 128 448 7 16
Code2 (2, 7) 128 1792 28 7
Code3 (2, 7) 128 4032 63 2
Code1 (2, 8) 256 1024 8 32
Code3 (2, 8) 256 11776 92 4
Code2 (3, 5) 243 6075 50 8

Hex Rook Graphs
HR (10) 55 495 18 5
HR (11) 66 660 20 5
HR (12) 78 858 22 6
HR (13) 91 1092 24 6
HR (14) 105 1365 26 7
HR (15) 120 1680 28 7
HR (16) 136 2040 30 8
HR (17) 153 2448 32 8
HR (18) 171 2907 34 9
HR (19) 190 3420 36 9
HR (20) 210 3990 38 9

Graph n m ∆ γ
Kneser Graphs

Kneser (8, 3) 56 280 10 7
Kneser (9, 3) 56 280 10 7
Kneser (9, 4) 126 315 5 26
Kneser (10, 3) 56 280 10 7
Kneser (11, 3) 56 280 10 7

Knight Graphs
Knight (4) 16 24 4 4
Knight (5) 25 48 8 5
Knight (6) 36 80 8 8
Knight (7) 49 120 8 10
Knight (8) 64 168 8 12
Knight (9) 81 224 8 14
Knight (10) 100 288 8 16
Knight (11) 121 360 8 21

Queen Graphs
Queen (10) 100 1470 35 5
Queen (11) 121 1980 40 5
Queen (12) 144 2596 43 6
Queen (13) 169 3328 48 7
Queen (14) 196 4186 51 8
Queen (15) 225 5180 56 9

Triangle Grid Graphs
TG (11) 66 165 6 13
TG (12) 78 198 6 15
TG (13) 91 234 6 17
TG (14) 105 273 6 19
TG (15) 120 315 6 21
TG (16) 136 360 6 24
TG (17) 153 408 6 27
TG (18) 171 459 6 30
TG (19) 190 513 6 33
TG (20) 210 570 6 36

4.2 Methodology

All of the experiments detailed in Sections 4.3 - 4.5 were run and timed on the same machine,

a four-core Intel Core i7-3770 running at 3.4 Ghz. The experiments were run over the course



74

of several months, during which time three experiments would be run at a time (freeing

the remaining core for background operating system tasks). Other than the experiments,

no other jobs were running on the machine during the entire span of the experiment. The

system was equipped with 16GB of memory, and each tested executable was allocated 4gb

of memory. Executables attempting to exceed this limit would be terminated, although no

executable did so during the course of the experiments. A separate process was started for

each input graph, instead of having one process read a succession of graphs, and each process

was allowed two hours (7200 seconds) of real execution time, including all input and output

time. The running times themselves were computed within the executable using the POSIX

real-time library (historically called librt), with timing beginning immediately before the

search algorithm begins (after the input graph had been read but before any preprocessing

specific to the algorithm) and ending immediately after the search algorithm ends.

Sections 4.3 - 4.5 contain the results of experiments comparing several variants of each

algorithm. In cases where an algorithm did not finish within the allocated 2 hours of run-

ning time, the search was terminated and the trial was labelled as a failure (such cases are

documented in the results in the following sections). No other data was collected for failed

trials. In cases where the algorithm finished within the allocated time, the total running

time (excluding input and output time) was logged. The output of each successful trial was

verified, and for all cases, was determined to be a valid dominating set of the correct size.

The total number of calls to the FindDominatingSet procedure was also logged. Since all

of the algorithms are built on Framework 3.1, the number of calls to FindDominatingSet

can be used as a time-agnostic comparison of each algorithm’s ability to reduce the search

tree size.



75

4.2.1 Mitigating the impact of ‘luck’

Internally, each algorithm was implemented using an adjacency list structure to store each

graph. The initial numbering of vertices in the input can affect the performance of the

algorithm, even in cases where the algorithm renumbers some vertices as a pre-processing

step, since when the renumbering is based on a property (such as degree) where ties may

occur, more than one possible numbering may exist. For a problem such as exhaustively

generating all dominating sets (or all sets of a given size), the initial numbering of vertices

would not generally affect the total time of the algorithm, since every dominating set must

be generated in all cases. For these experiments, however, the tested problem was of finding

a single example of a minimum dominating set. Once a minimum dominating set is found,

every algorithm must assert that no smaller sets exist before terminating (which leads to a

similar insensitivity to initial numbering as the exhaustive generation case), but, depending

on the initial ordering of vertices, the time needed to converge on a minimum dominating

set may differ. For some graphs, once a minimum dominating set is found, very little

time is needed to assert that no smaller sets exist compared to the time required to find

the minimum dominating set. On a particular input, an algorithm’s performance may be

artificially inflated by being ‘lucky’ and finding a small set quickly due to the initial ordering

of vertices.

To mitigate this sensitivity to initial conditions, each algorithm was tested multiple times

on different numberings of the same input graph. Ten permuted variants of each graph from

the input collection were produced by applying a random permutation to the numbering of

vertices of the graph, sampled uniformly at random from the set of all n! permutations of the

n vertices of the graph using a Knuth shuffle algorithm [46]. The resulting set of 550 permuted

graphs was then used as the input for the experiments. The original, unpermuted graph was

not used as a direct input for any of the tested graphs, since the generation mechanism for

each graph may produce a numbering that favours a particular implementation.



76

Since the permuted orderings were randomly generated, the distribution of running times

of the same algorithm over all permuted versions of the same graph should produce a reliable

measurement of the performance of that algorithm, with the influence of ‘luck’ minimized.

Various methods were used to collapse the set of running times over all tested permutations

into a single metric.

• The minimum running time of a particular algorithm over all permuted versions of one

graph provides a benchmark for ‘best case’ running time, which is highly susceptible

to the ‘luck’ issue described above. In general, an algorithm that displays consistently

good minimum running times but less impressive average or maximum running times is

likely very sensitive to the initial ordering of vertices, which means that future research

may be necessary into how best to order vertices before running the algorithm.

• The maximum running time of an algorithm over all permuted copies of one graph

provides a benchmark for ‘worst case’ running time. This can be used to determine

performance under the least ‘lucky’ conditions for initial numbering. In the context

of finding an algorithm with good general performance, a low maximum running time

might be the most valuable measurement, since it provides some assurance that the

algorithm will complete in a predictable amount of time.

• The average running time of an algorithm over all permuted copies of one graph might

be the most reliable metric for comparison against other algorithms. However, the

average may be unduly affected by outliers, for better or worse. In cases where one

or more permutations of the graph resulted in a failed trial due to the algorithm not

finishing within the alloted time, the average is essentially invalid.

• Various measures of spread can be used to determine the degree of uncertainty of the

collected data for a particular algorithm on a particular graph. For example, if all

10 permuted copies of the graph have running times which are tightly clustered, the



77

algorithm might be expected to have relatively predictable performance on any random

permutation of the graph, and therefore lack sensitivity to the initial numbering.

4.3 Fixed-Ordering Implementations

Algorithm 3.2 in Section 3.2 is an implementation of Framework 3.1 which uses static bound-

ing conditions and chooses vertices to dominate according only to their current domination

status (that is, dominated or undominated) and their index. The other variants (Algorithms

3.5 and 3.7) choose vertices to dominate based on other conditions which are derived from

the structure of the working dominating set (such as domination degree). Algorithm 3.2 uses

very simple logic to select the next vertex v to dominate and to iterate over the neighbours of

v to recurse on dominators, and therefore, unlike the other variants, there is no need to test

different combinations of heuristics, the algorithm is sensitive to the numbering of vertices

in the input.

To investigate the impact of vertex numbering on the performance of the algorithm,

three different variants of the algorithm were created, each with a preprocessing stage which

renumbered the vertices of the input graph. The different numberings used were

• Ascending order of degree;

• Descending order of degree; and

• The order produced by a breadth-first search (BFS) traversal starting at vertex 0 in

the initial input graph, with the neighbours of each vertex visited by the traversal

in numerical order. The reason that BFS was chosen instead of a different traversal

algorithm (such as depth-first search) was that the traversal tree produced by BFS is

guaranteed to contain paths with the smallest number of edges between the starting

vertex and every other vertex, thereby preserving a sense of “locality” in the numbering.



78

Tables 4.2 - 4.8 show the minimum, maximum and average running times of each variant,

along with the number of did-not-finish (failed trial) cases, over all 10 permutations of each

input graph. For each of the three metrics (minimum, maximum and average), the mini-

mum value in each row is shaded in gray. Broadly, the results show that the BFS ordering is

generally superior on the tested graphs, except classes with relatively sparse graphs, such as

the Knight and Triangular Grid graphs, where minimum degree ordering had better perfor-

mance. Maximum degree ordering had the best performance on a handful of cases, notably

on the hex rook graphs HR (12) and HR (16) where the other two implementations had high

failure rates. The minimum and maximum degree orderings have a natural disadvantage on

graphs where the degree was relatively uniform (or regular), reordering by degree has little

or no effect on those graphs.

The data in Tables 4.2 - 4.8 is also instructive on the usefulness of the different mea-

surements of performance. The ‘minimum’ time, in particular, is not representative of the

performance of the algorithm in many cases, particularly when several trials did not finish.

The average time, which is automatically rendered invalid by a single DNF trial, is better

at capturing the overall performance. There were very few cases where the algorithm with

the best average time did not also have the best maximum time. To predict the usefulness

of the algorithm as a general purpose solver, where the user’s impression of performance

will not be the mean of several trials, the maximum time seems to be the best statistic,

since, as mentioned in the previous section, it provides the best insight into the ‘worst case’

performance of the algorithm.

Based on this logic, the maximum time statistic was used as the primary metric for the

far more involved analysis of the remaining two variants and the overall comparison of the

different variants in Section 4.6



79

Table 4.2: Running times (in seconds) of the three fixed-ordering variants on covering code
graphs, along with the number of cases (out of 10) on which each implementation did not
finish (DNF).

Graph n m
Min. Degree Ordering Max. Degree Ordering BFS Ordering

Running Time
DNF

Running Time
DNF

Running Time
DNF

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
Code1 (2, 6) 64 192 1.423 1.795 2.196 0 1.7 2.027 2.584 0 0.265 0.265 0.267 0
Code2 (2, 6) 64 672 0.001 0.001 0.002 0 0.001 0.001 0.001 0 0.001 0.001 0.001 0
Code3 (2, 6) 64 1312 0 − − 5 0 − − 1 0 − − 1
Code1 (2, 7) 128 448 1.41 7.119 21.39 0 1.947 11.85 36.07 0 9.269 10.15 11.04 0
Code2 (2, 7) 128 1792 15.69 17.66 19.24 0 15.55 17.57 19.45 0 5.017 5.094 5.16 0
Code3 (2, 7) 128 4032 0.001 0.001 0.001 0 0.001 0.001 0.001 0 0.001 0.001 0.001 0
Code3 (2, 8) 256 11776 0.163 0.185 0.208 0 0.164 − − 1 0.124 0.15 0.155 0
Code2 (3, 5) 243 6075 − − − 10 − − − 10 − − − 10

Table 4.3: Running times (in seconds) of the three fixed-ordering variants on hex rook
graphs, along with the number of cases (out of 10) on which each implementation did not
finish (DNF).

Graph n m
Min. Degree Ordering Max. Degree Ordering BFS Ordering

Running Time
DNF

Running Time
DNF

Running Time
DNF

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
HR (10) 55 495 0.008 0.009 0.011 0 0.009 0.009 0.01 0 0.007 − − 4
HR (11) 66 660 0.015 0.02 0.038 0 0.015 0.021 0.051 0 0.011 0.016 0.028 0
HR (12) 78 858 0.263 − − 1 0.271 0.287 0.306 0 0.196 − − 7
HR (13) 91 1092 0.441 0.519 0.617 0 0.472 0.542 0.641 0 0.234 0.319 0.463 0
HR (14) 105 1365 9.865 10.62 11.68 0 10.13 − − 1 6.138 − − 7
HR (15) 120 1680 18.2 19.75 21.09 0 17.04 20.18 21.97 0 7.668 12.48 15.01 0
HR (16) 136 2040 479.6 − − 1 410.7 482.5 543.4 0 205.1 − − 5
HR (17) 153 2448 760.3 871.7 970.5 0 799.8 893.7 962.2 0 370.5 527.8 690 0
HR (18) 171 2907 − − − 10 − − − 10 − − − 10
HR (19) 190 3420 − − − 10 − − − 10 − − − 10
HR (20) 210 3990 − − − 10 − − − 10 − − − 10

Table 4.4: Running times (in seconds) of the three fixed-ordering variants on Kneser graphs,
along with the number of cases (out of 10) on which each implementation did not finish
(DNF).

Graph n m
Min. Degree Ordering Max. Degree Ordering BFS Ordering

Running Time
DNF

Running Time
DNF

Running Time
DNF

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
Kneser (8, 3) 56 280 0.014 0.017 0.024 0 0.013 0.017 0.025 0 0.016 0.017 0.018 0
Kneser (9, 3) 56 280 0.013 0.015 0.017 0 0.015 0.017 0.024 0 0.016 0.018 0.021 0
Kneser (9, 4) 126 315 − − − 10 − − − 10 − − − 10
Kneser (10, 3) 56 280 0.014 0.016 0.02 0 0.014 0.016 0.019 0 0.012 0.017 0.021 0
Kneser (11, 3) 56 280 0.013 0.016 0.019 0 0.013 0.017 0.025 0 0.012 0.018 0.021 0



80

Table 4.5: Running times (in seconds) of the three fixed-ordering variants on knight graphs,
along with the number of cases (out of 10) on which each implementation did not finish
(DNF).

Graph n m
Min. Degree Ordering Max. Degree Ordering BFS Ordering

Running Time
DNF

Running Time
DNF

Running Time
DNF

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
Knight (4) 16 24 0 0 0 0 − − − 10 0 0 0 0
Knight (5) 25 48 0 0 0 0 − − − 10 0 0 0 0
Knight (6) 36 80 0 0 0.001 0 − − − 10 0.001 0.002 0.003 0
Knight (7) 49 120 0.009 0.01 0.012 0 0.278 0.319 0.406 0 0.015 0.039 0.074 0
Knight (8) 64 168 0.213 0.238 0.286 0 8.13 10.26 17.36 0 0.393 1.307 3.014 0
Knight (9) 81 224 0.299 0.461 0.559 0 121.1 285.8 721.1 0 4.337 28.36 89.77 0
Knight (10) 100 288 4.535 6.058 8.263 0 1737 − − 4 36.52 327.7 881.9 0
Knight (11) 121 360 2251 2528 3017 0 − − − 10 − − − 10

Table 4.6: Running times (in seconds) of the three fixed-ordering variants on Cartesian
products of cycles, along with the number of cases (out of 10) on which each implementation
did not finish (DNF).

Graph n m
Min. Degree Ordering Max. Degree Ordering BFS Ordering

Running Time
DNF

Running Time
DNF

Running Time
DNF

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
C8 � C8 64 128 9.147 11.03 13.86 0 7.053 12.31 19.8 0 0.692 0.706 0.725 0
C9 � C9 81 162 10.44 17.99 25.82 0 10.17 17.6 28.71 0 0.52 0.58 0.679 0
C10 � C10 100 200 25.97 67.12 185.2 0 22.33 85.38 180.5 0 0.622 0.669 0.71 0
C11 � C11 121 242 − − − 10 − − − 10 303.1 388.5 449.6 0
C12 � C12 144 288 − − − 10 − − − 10 − − − 10
C13 � C13 169 338 − − − 10 − − − 10 − − − 10
C14 � C14 196 392 − − − 10 − − − 10 − − − 10
C15 � C15 225 450 − − − 10 − − − 10 − − − 10

Table 4.7: Running times (in seconds) of the three fixed-ordering variants on queen graphs,
along with the number of cases (out of 10) on which each implementation did not finish
(DNF).

Graph n m
Min. Degree Ordering Max. Degree Ordering BFS Ordering

Running Time
DNF

Running Time
DNF

Running Time
DNF

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
Queen (10) 100 1470 0.072 0.119 0.171 0 0.145 0.159 0.172 0 0.105 0.2 0.422 0
Queen (11) 121 1980 1.014 1.388 1.752 0 0.254 0.269 0.281 0 0.074 1.265 3.125 0
Queen (12) 144 2596 9.629 24.02 38.6 0 11.33 11.73 12.13 0 3.554 9.764 19.39 0
Queen (13) 169 3328 155.1 206.8 254.4 0 349.6 354.8 364.2 0 141.7 165 216.7 0
Queen (14) 196 4186 4939 5833 6693 0 − − − 10 4779 5719 6646 0
Queen (15) 225 5180 − − − 10 − − − 10 − − − 10



81

Table 4.8: Running times (in seconds) of the three fixed-ordering variants on triangle grid
graphs, along with the number of cases (out of 10) on which each implementation did not
finish (DNF).

Graph n m
Min. Degree Ordering Max. Degree Ordering BFS Ordering

Running Time
DNF

Running Time
DNF

Running Time
DNF

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
TG (11) 66 165 0.069 0.105 0.132 0 3.02 5.56 10.52 0 0.075 0.112 0.174 0
TG (12) 78 198 0.294 0.457 0.655 0 45.71 107.9 175.4 0 0.438 1.208 2.74 0
TG (13) 91 234 2.666 4.053 6.038 0 591.4 1178 1824 0 2.103 6.201 19.44 0
TG (14) 105 273 46.36 57.37 82.84 0 − − − 10 10.6 45.46 133.2 0
TG (15) 120 315 130.3 184.2 249.8 0 − − − 10 53.84 428.3 1383 0
TG (16) 136 360 2923 4711 6797 0 − − − 10 974.7 − − 2
TG (17) 153 408 − − − 10 − − − 10 − − − 10
TG (18) 171 459 − − − 10 − − − 10 − − − 10
TG (19) 190 513 − − − 10 − − − 10 − − − 10

4.4 Domination Degree Implementations

The variant of Framework 3.1 which uses domination degree in the bounding condition is

described in Section 3.3. Pseudocode for this variant is given in Algorithm 3.5, but as

mentioned in Section 3.3, there are several aspects of the algorithm for which multiple

implementation options exist.

First, and most significantly, the criteria for choosing the next vertex to dominate (the

ChooseNextVertex function on line 53 of Algorithm 3.5) is deliberately left undefined

in Algorithm 3.5. The two options proposed in Section 3.5 for this procedure are to choose

a vertex with minimum candidate degree or a vertex with maximum candidate degree.

Second, in Algorithm 3.5, once a vertex v has been chosen to dominate, the neighbours

of v are sorted by domination degree (on line 55 of Algorithm 3.5). The sort order (ascend-

ing/descending) is left undefined, since it is unclear (beyond anecdotal assumptions) which

order will lead to higher performance.

The third aspect is an optimization. On line 62, the current branch of recursion is

terminated in cases where excluding a vertex from consideration as a dominator will prevent a

dominating set from being completed. This optimization does not carry any real computation



82

cost (besides constant-time overhead) in Algorithm 3.5, but it is not clear how effective it is

at ending branches.

Finally, the pseudocode for Algorithm 3.5 tests the bounding condition at the beginning of

each call to FindDominatingSet (lines 51 - 52 of Algorithm 3.5), as specified in Framework

3.1. However, once a vertex v has been chosen for domination, each iteration of the loop

over the set of neighbours of v (line 57) changes the set of candidate vertices, and therefore

potentially changes outcome of the bounding conditions. This is not an issue in the fixed

order algorithms (where the static bounding condition is only affected by the size of the

working set, which is fixed over all iterations of the loop). In cases where, for example, the

first iteration of the loop excludes a candidate vertex which upsets the bounding condition,

the algorithm will recurse on all of the other neighbours of v and promptly return (since the

check of the bounding conditions in the recursive call will fail). One possible optimization is

to recheck the bounding condition at each iteration of the loop (that is, before line 58) and

terminate the current branch of recursion immediately if the bound fails.

The four aspects above are independent, and there are two possible implementations

for each aspect. To test all possibilities, sixteen implementations of Algorithm 3.5 were

prepared, representing all combinations of the aspects above:

• Minimum vs. maximum candidate degree vertices chosen for domination.

• Ascending vs. descending neighbour ordering.

• The ‘force-stop’ (FS) optimization enabled vs. disabled.

• Bound rechecking (RC) optimization at each iteration of the loop enabled vs. disabled.

Each of the sixteen implementations was tested on the entire input dataset as specified

in Section 4.2.

An overall comparison of the results of the experiments on each graph, compared with

the results from other variants, can be found in Section 4.6.



83

4.4.1 Single Aspect Comparisons

Although the four aspects detailed in the previous section are independent in the code, they

may be correlated in their behavior. For example, it may be that a combination of the force-

stop optimization and the bound rechecking during the neighbour loop results in a speed

improvement, but in all other cases (where the two are not used together) no improvement

is observed, due to some feedback between the two aspects. Since the ultimate goal of this

series of experiments is to find the “best” combination of aspects, it is important to note

apparent correlations when they occur.

On the other hand, it is also useful to assess each aspect separately, to investigate the

overall impact of each choice on the performance of the dominating set computation when

all other aspects are fixed. Since every possible combination of aspects was tested as part

of the experiment, it is possible to examine the difference in running time or call tree size

between pairs of algorithms which have a different implementation of a particular aspect

(such as vertex selection) but identical implementations of every other aspect.

Denote each of the 16 variants of Algorithm 3.5 by

A(vs, no, fs, rc)

where vs ∈ {Min. CD,Max. CD}, no ∈ {ascending, descending}, fs ∈ {enabled, disabled}

and rc ∈ {enabled, disabled}. For a graph G in the input dataset of Section 4.1, let

MaxTime(G,A(vs, no, fs, rc)) and MaxCalls(G,A(vs, no, fs, rc)) be the maximum running

time and number of recursive calls to FindDominatingSet (respectively) across the 10

tested permutations of the graph G.

To examine the impact of a particular aspect, the ratios of running time or calls between

pairs of variants which differ in exactly one aspect can be examined. For example, if G is

the set of all graphs in the input dataset, the ratios of running time for ascending neighbour



84

order versus descending neighbour order are the values

MaxTime(G,A(vs, ascending, fs, rc))

MaxTime(G,A(vs, descending, fs, rc))

whereG ∈ G, vs ∈ {Min. CD,Max. CD}, fs ∈ {enabled, disabled} and rc ∈ {enabled, disabled}.

The ratio can similarly be produced for the call tree size.

Figures 4.1 - 4.4 show histograms of the multiset of pairwise ratios computed by the

formula above for each of the four aspects detailed in the previous section. Cases where

neither algorithm finished are excluded from the histogram. Cases where the algorithm in

the numerator did not finish but the algorithm in the denominator did finish are treated as

having a ratio of zero, and symmetrically, cases where the algorithm in the numerator finished

but the algorithm in the denominator did not are treated as having a ratio of infinity (which

falls into the rightmost bar of the histogram). Intuitively, for a histogram which compares

“Option A vs. Option B”, the left side of the histogram corresponds to cases where Option A

had a smaller running time or number of calls and the right side of the histogram corresponds

to cases where Option B had a smaller running time or number of calls.

Tables 4.9 and 4.10 contain a numerical summary of the data in the histograms per family

of graphs. For each type of ratio and graph family, the tables show the number of zero ratios,

the number of infinite ratios and the median ratio among all cases where both the numerator

and denominator algorithms finished within the alloted time. The tables also contain data

for the complete input set in two forms: a general aggregated median across all input graphs,

and a median across all families (with each family receiving equal weight) to control for the

differing number of graphs in different families (which might bias the aggregate median).

All of the histograms show relatively strong trends, and the trend for running time

generally agrees with the trend for total calls. Maximum CD vertex selection has worse

performance than minimum CD vertex selection in almost all cases, with an extremely high

number of cases falling into the extreme right of the histogram. Descending neighbour



85

ordering generally has better performance than ascending neighbouring, but in the roughly

26% (100/380) of cases where ascending order has better performance, the advantage is

extremely lopsided (in both time and calls). The per-family summary in Tables 4.9 and

4.10 reveals that the disparity is primarily due to the descending order variants not finishing

within the alloted time on a large number of cases. Conversely, there are very few cases

in which the ascending order variants do not finish. Arguably, the ascending ordering is a

better choice for a general algorithm, since the experimental data suggests it is bounded to

within a more limited range (even though it is often slower than descending ordering).

For both of the optimization aspects, the histograms show unimpressive running time

performance. The bound rechecking optimization resulted in a reasonably consistent im-

provement in the number of calls, but overall had worse running time, likely because of the

overhead of recomputing the bounds at each iteration of the loop. The force stop optimiza-

tion had minimal impact on the number of calls. This is likely a sign that the optimization

almost never terminated any branches. Overall, the histograms suggest that leaving both

optimizations disabled is a better option for graphs similar to the input dataset.

Table 4.9: DD Bounding: Summary of maximum time ratios for all aspects on all graph
families

Family Min. CD
Max. CD

Asc. Order
Desc. Order

FS Disabled
FS Enabled

RC Disabled
RC Enabled

0 Median ∞ 0 Median ∞ 0 Median ∞ 0 Median ∞
Cartesian Products of Cycles 16 0.067 0 0 1.471 0 0 0.979 0 0 0.915 0

Total observations: 40 pairs 32 pairs 32 pairs 32 pairs
Covering Code Graphs 4 0.299 0 32 1.914 4 0 0.997 0 0 1.019 0

Total observations: 48 pairs 64 pairs 46 pairs 46 pairs
Hex Rook Graphs 0 0.38 0 8 1.714 0 0 0.997 0 0 0.953 0

Total observations: 84 pairs 88 pairs 84 pairs 84 pairs
Kneser Graphs 8 0.562 0 32 1.284 0 0 0.992 0 0 0.877 0

Total observations: 24 pairs 36 pairs 20 pairs 20 pairs
Knight Graphs 8 0.022 0 24 20.28 0 0 1.016 0 0 0.917 0

Total observations: 52 pairs 60 pairs 48 pairs 48 pairs
Queen Graphs 8 0.535 0 0 3.071 0 0 0.997 0 0 0.978 0

Total observations: 48 pairs 44 pairs 44 pairs 44 pairs
Triangular Grid Graphs 30 0.005 0 4 1.958 2 0 0.993 2 0 0.905 0

Total observations: 60 pairs 48 pairs 46 pairs 45 pairs
All Families (aggregate) 74 0.277 0 100 1.98 6 0 0.996 2 0 0.945 0

Total observations: 356 pairs 372 pairs 320 pairs 319 pairs
All Families (equal weight) 74 0.299 0 100 1.914 6 0 0.997 2 0 0.917 0

Total observations: 356 pairs 372 pairs 320 pairs 319 pairs



86

< 1/50 1/2 1.0 2.0 > 50
Max. Time (Min. CD)
Max. Time (Max. CD)

0

20

40

60

80

100

120

O
bs

er
va

tio
ns

(o
f3

56
to

ta
l)

DD Bounding - Maximum Time
Min. CD vs Max. CD vertex selection

(a) Max. Time

< 1/50 1/2 1.0 2.0 > 50
Max. Calls (Min. CD)
Max. Calls (Max. CD)

0

20

40

60

80

100

120

O
bs

er
va

tio
ns

(o
f3

56
to

ta
l)

DD Bounding - Maximum Calls
Min. CD vs Max. CD vertex selection

(b) Max. Calls

Figure 4.1: DD Bounding: Histogram of pairwise ratios for Min. CD vs. Max. CD vertex
selection.

< 1/50 1/2 1.0 2.0 > 50
Max. Time (Asc. Order)

Max. Time (Desc. Order)

0

20

40

60

80

100

O
bs

er
va

tio
ns

(o
f3

72
to

ta
l)

DD Bounding - Maximum Time
Ascending vs. Descending neighbour order

(a) Max. Time

< 1/50 1/2 1.0 2.0 > 50
Max. Calls (Asc. Order)

Max. Calls (Desc. Order)

0

20

40

60

80

100

O
bs

er
va

tio
ns

(o
f3

72
to

ta
l)

DD Bounding - Maximum Calls
Ascending vs. Descending neighbour order

(b) Max. Calls

Figure 4.2: DD Bounding: Histogram of pairwise ratios for ascending vs. descending neigh-
bour order.



87

< 1/50 1/2 1.0 2.0 > 50
Max. Time (FS Disabled)
Max. Time (FS Enabled)

0

20

40

60

80

100

120

140

160

O
bs

er
va

tio
ns

(o
f3

20
to

ta
l)

DD Bounding - Maximum Time
Force Stop Disabled vs. Enabled

(a) Max. Time

< 1/50 1/2 1.0 2.0 > 50
Max. Calls (FS Disabled)
Max. Calls (FS Enabled)

0

50

100

150

200

250

300

O
bs

er
va

tio
ns

(o
f3

20
to

ta
l)

DD Bounding - Maximum Calls
Force Stop Disabled vs. Enabled

(b) Max. Calls

Figure 4.3: DD Bounding: Histogram of pairwise ratios for force stop optimization disabled
vs. enabled.

< 1/50 1/2 1.0 2.0 > 50
Max. Time (RC Disabled)
Max. Time (RC Enabled)

0

10

20

30

40

50

O
bs

er
va

tio
ns

(o
f3

19
to

ta
l)

DD Bounding - Maximum Time
Bound Rechecking Disabled vs. Enabled

(a) Max. Time

< 1/50 1/2 1.0 2.0 > 50
Max. Calls (RC Disabled)
Max. Calls (RC Enabled)

0

20

40

60

80

100

O
bs

er
va

tio
ns

(o
f3

19
to

ta
l)

DD Bounding - Maximum Calls
Bound Rechecking Disabled vs. Enabled

(b) Max. Calls

Figure 4.4: DD Bounding: Histogram of pairwise ratios for bound rechecking optimization
disabled vs. enabled.



88

Table 4.10: DD Bounding: Summary of maximum total call ratios for all aspects on all
graph families

Family Min. CD
Max. CD

Asc. Order
Desc. Order

FS Disabled
FS Enabled

RC Disabled
RC Enabled

0 Median ∞ 0 Median ∞ 0 Median ∞ 0 Median ∞
Cartesian Products of Cycles 16 0.072 0 0 1.475 0 0 1 0 0 1.073 0

Total valid observations: 40 pairs 32 pairs 32 pairs 32 pairs
Covering Code Graphs 4 0.278 0 32 1.816 4 0 1 0 0 1.205 0

Total valid observations: 48 pairs 64 pairs 46 pairs 46 pairs
Hex Rook Graphs 0 0.391 0 8 1.696 0 0 1 0 0 1.037 0

Total valid observations: 84 pairs 88 pairs 84 pairs 84 pairs
Kneser Graphs 8 0.538 0 32 1.283 0 0 1 0 0 1.01 0

Total valid observations: 24 pairs 36 pairs 20 pairs 20 pairs
Knight Graphs 8 0.018 0 24 19.41 0 0 1 0 0 1.107 0

Total valid observations: 52 pairs 60 pairs 48 pairs 48 pairs
Queen Graphs 8 0.518 0 0 3.196 0 0 1 0 0 1.036 0

Total valid observations: 48 pairs 44 pairs 44 pairs 44 pairs
Triangular Grid Graphs 30 0.006 0 4 1.759 2 0 1 2 0 1.031 0

Total valid observations: 60 pairs 48 pairs 46 pairs 45 pairs
All Families (aggregate) 74 0.267 0 100 2.014 6 0 1 2 0 1.063 0

Total valid observations: 356 pairs 372 pairs 320 pairs 319 pairs
All Families (equal weight) 74 0.278 0 100 1.759 6 0 1 2 0 1.037 0

Total valid observations: 356 pairs 372 pairs 320 pairs 319 pairs

4.5 Max Dominator Degree Implementations

For Algorithm 3.7, which uses a bounding condition based on max dominator degree (The-

orem 3.6), 32 variants were tested. Like Algorithm 3.5, four independent aspects of the

pseudocode in Section 3.4 were left undefined: the selection rule for a vertex v to be dom-

inated at each step, the ordering of the neighbours v, the force-stop optimization and the

rechecking of the bounding conditions during the loop over the neighbours of v. For the latter

three aspects, the options are identical to those in Section 4.4. For the selection rule, four

options were tested: choosing a vertex with minimum MDD, a vertex with maximum MDD,

a vertex with minimum candidate degree and a vertex with maximum candidate degree.

4.5.1 Single Aspect Comparison

In a similar format to the histograms and tables in Section 4.4.1, Figures 4.5 - 4.13 show

histograms of the multiset of pairwise ratios for each of the four aspects profiled for the MDD



89

bounding strategy. Tables 4.11 and 4.12 summarize the results by family. Since there were

four options for the vertex selection aspect, six pairwise comparisons are presented, one for

each pair out of the four options, to allow the analysis to be congruent with the analysis

given in Section 4.4.1.

Overall, among the different vertex selection strategies, minimum CD generally has the

advantage, with minimum MDD also having strong performance. Curiously, even though

Tables 4.11 and 4.12 clearly indicate that minimum CD vertex selection has better perfor-

mance on the queen graphs, the overall comparison in Section 4.6 below reveals that either

minimum MDD and maximum MDD rules were superior on all of the queen graphs; this is

likely due to the two MDD-based approaches ‘splitting the vote’, with maximum MDD being

better for the smaller graphs in the family and minimum MDD being a better strategy for

the larger graphs in the family, while minimum CD was, across the entire family, generally

better.

The neighbour ordering comparison shows a very similar distribution to the neighbour or-

dering comparison on the DD bounding algorithms, with descending ordering being generally

better but having a very high number of cases where it could not finish.

As in Section 4.4.1, the force stop optimization does not seem to have any positive effect

(evidenced by the fact that the median ratio of call tree size is exactly 1), and the overhead

added by the optimization outweighs the benefits in all of the aggregated statistics. Unlike

in Section 4.4.1, however, enabling the bound rechecking optimization results in a significant

improvement in both maximum time and maximum recursive calls, possibly because the

MDD bounding conditions are more sensitive to changes between iterations of the neighbour

loop.



90

< 1/50 1/2 1.0 2.0 > 50
Max. Time (Min. CD)
Max. Time (Max. CD)

0

10

20

30

40

50

60

O
bs

er
va

tio
ns

(o
f3

76
to

ta
l)

MDD Bounding - Maximum Time
Min. CD vs Max. CD vertex selection

(a) Max. Time

< 1/50 1/2 1.0 2.0 > 50
Max. Calls (Min. CD)
Max. Calls (Max. CD)

0

10

20

30

40

50

60

O
bs

er
va

tio
ns

(o
f3

76
to

ta
l)

MDD Bounding - Maximum Calls
Min. CD vs Max. CD vertex selection

(b) Max. Calls

Figure 4.5: MDD Bounding: Histogram of pairwise ratios for Min. CD vs. Max. CD vertex
selection.

< 1/50 1/2 1.0 2.0 > 50
Max. Time (Min. MDD)
Max. Time (Min. CD)

0

5

10

15

20

25

30

35

O
bs

er
va

tio
ns

(o
f3

92
to

ta
l)

MDD Bounding - Maximum Time
Min. MDD vs Min. CD vertex selection

(a) Max. Time

< 1/50 1/2 1.0 2.0 > 50
Max. Calls (Min. MDD)
Max. Calls (Min. CD)

0

5

10

15

20

25

30

35

O
bs

er
va

tio
ns

(o
f3

92
to

ta
l)

MDD Bounding - Maximum Calls
Min. MDD vs Min. CD vertex selection

(b) Max. Calls

Figure 4.6: MDD Bounding: Histogram of pairwise ratios for Min. MDD vs. Min. CD
vertex selection.



91

< 1/50 1/2 1.0 2.0 > 50
Max. Time (Min. MDD)
Max. Time (Max. CD)

0

5

10

15

20

25

30

35

O
bs

er
va

tio
ns

(o
f3

62
to

ta
l)

MDD Bounding - Maximum Time
Min. MDD vs Max. CD vertex selection

(a) Max. Time

< 1/50 1/2 1.0 2.0 > 50
Max. Calls (Min. MDD)
Max. Calls (Max. CD)

0

5

10

15

20

25

30

35

O
bs

er
va

tio
ns

(o
f3

62
to

ta
l)

MDD Bounding - Maximum Calls
Min. MDD vs Max. CD vertex selection

(b) Max. Calls

Figure 4.7: MDD Bounding: Histogram of pairwise ratios for Min. MDD vs. Max. CD
vertex selection.

< 1/50 1/2 1.0 2.0 > 50
Max. Time (Max. MDD)

Max. Time (Min. CD)

0

5

10

15

20

25

30

35

O
bs

er
va

tio
ns

(o
f3

76
to

ta
l)

MDD Bounding - Maximum Time
Max. MDD vs Min. CD vertex selection

(a) Max. Time

< 1/50 1/2 1.0 2.0 > 50
Max. Calls (Max. MDD)

Max. Calls (Min. CD)

0

5

10

15

20

25

30

35

O
bs

er
va

tio
ns

(o
f3

76
to

ta
l)

MDD Bounding - Maximum Calls
Max. MDD vs Min. CD vertex selection

(b) Max. Calls

Figure 4.8: MDD Bounding: Histogram of pairwise ratios for Max. MDD vs. Min. CD
vertex selection.



92

< 1/50 1/2 1.0 2.0 > 50
Max. Time (Max. MDD)
Max. Time (Max. CD)

0

2

4

6

8

10

12

14

16

18

O
bs

er
va

tio
ns

(o
f3

46
to

ta
l)

MDD Bounding - Maximum Time
Max. MDD vs Max. CD vertex selection

(a) Max. Time

< 1/50 1/2 1.0 2.0 > 50
Max. Calls (Max. MDD)
Max. Calls (Max. CD)

0

2

4

6

8

10

12

14

16

18

O
bs

er
va

tio
ns

(o
f3

46
to

ta
l)

MDD Bounding - Maximum Calls
Max. MDD vs Max. CD vertex selection

(b) Max. Calls

Figure 4.9: MDD Bounding: Histogram of pairwise ratios for Max. MDD vs. Max. CD
vertex selection.

< 1/50 1/2 1.0 2.0 > 50
Max. Time (Min. MDD)
Max. Time (Max. MDD)

0

5

10

15

20

25

30

O
bs

er
va

tio
ns

(o
f3

72
to

ta
l)

MDD Bounding - Maximum Time
Min. MDD vs Max. MDD vertex selection

(a) Max. Time

< 1/50 1/2 1.0 2.0 > 50
Max. Calls (Min. MDD)
Max. Calls (Max. MDD)

0

5

10

15

20

25

30

O
bs

er
va

tio
ns

(o
f3

72
to

ta
l)

MDD Bounding - Maximum Calls
Min. MDD vs Max. MDD vertex selection

(b) Max. Calls

Figure 4.10: MDD Bounding: Histogram of pairwise ratios for Min. MDD vs. Max. MDD
vertex selection.



93

< 1/50 1/2 1.0 2.0 > 50
Max. Time (Asc. Order)

Max. Time (Desc. Order)

0

50

100

150

200

O
bs

er
va

tio
ns

(o
f8

32
to

ta
l)

MDD Bounding - Maximum Time
Ascending vs. Descending neighbour order

(a) Max. Time

< 1/50 1/2 1.0 2.0 > 50
Max. Calls (Asc. Order)

Max. Calls (Desc. Order)

0

50

100

150

200

O
bs

er
va

tio
ns

(o
f8

32
to

ta
l)

MDD Bounding - Maximum Calls
Ascending vs. Descending neighbour order

(b) Max. Calls

Figure 4.11: MDD Bounding: Histogram of pairwise ratios for ascending vs. descending
neighbour order.

< 1/50 1/2 1.0 2.0 > 50
Max. Time (FS Disabled)
Max. Time (FS Enabled)

0

20

40

60

80

100

120

140

160

180

O
bs

er
va

tio
ns

(o
f7

05
to

ta
l)

MDD Bounding - Maximum Time
Force Stop Disabled vs. Enabled

(a) Max. Time

< 1/50 1/2 1.0 2.0 > 50
Max. Calls (FS Disabled)
Max. Calls (FS Enabled)

0

100

200

300

400

500

600

O
bs

er
va

tio
ns

(o
f7

05
to

ta
l)

MDD Bounding - Maximum Calls
Force Stop Disabled vs. Enabled

(b) Max. Calls

Figure 4.12: MDD Bounding: Histogram of pairwise ratios for force stop optimization dis-
abled vs. enabled.



94

< 1/50 1/2 1.0 2.0 > 50
Max. Time (RC Disabled)
Max. Time (RC Enabled)

0

10

20

30

40

50

60

70

80

O
bs

er
va

tio
ns

(o
f7

08
to

ta
l)

MDD Bounding - Maximum Time
Bound Rechecking Disabled vs. Enabled

(a) Max. Time

< 1/50 1/2 1.0 2.0 > 50
Max. Calls (RC Disabled)
Max. Calls (RC Enabled)

0

10

20

30

40

50

60

70

80

90
O

bs
er

va
tio

ns
(o

f7
08

to
ta

l)

MDD Bounding - Maximum Calls
Bound Rechecking Disabled vs. Enabled

(b) Max. Calls

Figure 4.13: MDD Bounding: Histogram of pairwise ratios for bound rechecking optimization
disabled vs. enabled.



95

Table 4.11: MDD Bounding: Summary of maximum time ratios for all aspects on all graph
families

Family Min. CD
Max. CD

Min. MDD
Min. CD

Min. MDD
Max. CD

Max. MDD
Min. CD

Max. MDD
Max. CD

0 Median ∞ 0 Median ∞ 0 Median ∞ 0 Median ∞ 0 Median ∞
Cartesian Products of Cycles 16 0.244 0 0 3.886 8 8 0.64 0 0 2.324 12 4 0.509 0

Total observations: 56 pairs 56 pairs 48 pairs 56 pairs 44 pairs
Covering Code Graphs 0 0.622 0 0 3.258 0 0 1.006 0 0 1.225 0 0 0.598 0

Total observations: 48 pairs 48 pairs 48 pairs 48 pairs 48 pairs
Hex Rook Graphs 0 0.405 0 4 1.558 0 4 0.638 0 0 1.735 0 0 0.703 0

Total observations: 80 pairs 84 pairs 84 pairs 80 pairs 80 pairs
Kneser Graphs 8 0.63 0 0 1.2 8 0 0.773 0 0 1.3 2 6 0.801 0

Total observations: 24 pairs 24 pairs 16 pairs 24 pairs 22 pairs
Knight Graphs 0 0.067 0 12 5.998 0 12 0.31 0 0 5.273 0 0 0.349 0

Total observations: 52 pairs 64 pairs 64 pairs 52 pairs 52 pairs
Queen Graphs 4 0.623 0 0 1.662 6 0 1.393 2 0 1.019 8 0 0.868 4

Total observations: 48 pairs 48 pairs 44 pairs 48 pairs 44 pairs
Triangular Grid Graphs 16 0.205 0 0 1.103 10 6 0.417 0 0 2.42 12 4 0.415 0

Total observations: 68 pairs 68 pairs 58 pairs 68 pairs 56 pairs
All Families (aggregate) 44 0.354 0 16 1.71 32 30 0.697 2 0 1.841 34 14 0.592 4

Total observations: 376 pairs 392 pairs 362 pairs 376 pairs 346 pairs
All Families (equal weight) 44 0.405 0 16 1.662 32 30 0.64 2 0 1.735 34 14 0.598 4

Total observations: 376 pairs 392 pairs 362 pairs 376 pairs 346 pairs

Family Min. MDD
Max. MDD

Asc. Order
Desc. Order

FS Disabled
FS Enabled

RC Disabled
RC Enabled

0 Median ∞ 0 Median ∞ 0 Median ∞ 0 Median ∞
Cartesian Products of Cycles 4 1.132 0 0 2.709 28 0 0.952 0 0 1.236 0

Total observations: 48 pairs 108 pairs 94 pairs 94 pairs
Covering Code Graphs 0 1.565 0 64 2.433 0 0 0.991 0 0 1.282 0

Total observations: 48 pairs 128 pairs 96 pairs 96 pairs
Hex Rook Graphs 4 0.884 0 28 2.285 0 0 0.991 0 0 1.066 0

Total observations: 84 pairs 176 pairs 162 pairs 162 pairs
Kneser Graphs 0 0.943 6 64 1.883 2 0 0.985 0 0 1.023 2

Total observations: 22 pairs 72 pairs 39 pairs 40 pairs
Knight Graphs 12 1.027 0 36 13.96 0 0 0.99 0 0 1.088 0

Total observations: 64 pairs 128 pairs 110 pairs 110 pairs
Queen Graphs 4 1.636 2 4 4.735 10 0 0.992 0 0 1.149 2

Total observations: 44 pairs 94 pairs 87 pairs 88 pairs
Triangular Grid Graphs 6 0.856 4 0 3.099 18 0 0.961 0 0 1.372 2

Total observations: 62 pairs 126 pairs 117 pairs 118 pairs
All Families (aggregate) 30 1 12 196 2.945 58 0 0.985 0 0 1.144 6

Total observations: 372 pairs 832 pairs 705 pairs 708 pairs
All Families (equal weight) 30 1.027 12 196 2.709 58 0 0.99 0 0 1.149 6

Total observations: 372 pairs 832 pairs 705 pairs 708 pairs



96

Table 4.12: MDD Bounding: Summary of maximum total call ratios for all aspects on all
graph families

Family Min. CD
Max. CD

Min. MDD
Min. CD

Min. MDD
Max. CD

Max. MDD
Min. CD

Max. MDD
Max. CD

0 Median ∞ 0 Median ∞ 0 Median ∞ 0 Median ∞ 0 Median ∞
Cartesian Products of Cycles 16 0.263 0 0 3.695 8 8 0.695 0 0 1.93 12 4 0.522 0

Total observations: 56 pairs 56 pairs 48 pairs 56 pairs 44 pairs
Covering Code Graphs 0 0.633 0 0 3.372 0 0 1 0 0 1.165 0 0 0.589 0

Total observations: 48 pairs 48 pairs 48 pairs 48 pairs 48 pairs
Hex Rook Graphs 0 0.4 0 4 1.626 0 4 0.61 0 0 1.734 0 0 0.689 0

Total observations: 80 pairs 84 pairs 84 pairs 80 pairs 80 pairs
Kneser Graphs 8 0.575 0 0 1.271 8 0 0.722 0 0 1.42 2 6 0.807 0

Total observations: 24 pairs 24 pairs 16 pairs 24 pairs 22 pairs
Knight Graphs 0 0.057 0 12 6.923 0 12 0.354 0 0 5.689 0 0 0.294 0

Total observations: 52 pairs 64 pairs 64 pairs 52 pairs 52 pairs
Queen Graphs 4 0.592 0 0 1.739 6 0 1.368 2 0 0.918 8 0 0.825 4

Total observations: 48 pairs 48 pairs 44 pairs 48 pairs 44 pairs
Triangular Grid Graphs 16 0.224 0 0 0.988 10 6 0.462 0 0 2.444 12 4 0.396 0

Total observations: 68 pairs 68 pairs 58 pairs 68 pairs 56 pairs
All Families (aggregate) 44 0.376 0 16 1.794 32 30 0.704 2 0 1.778 34 14 0.587 4

Total observations: 376 pairs 392 pairs 362 pairs 376 pairs 346 pairs
All Families (equal weight) 44 0.4 0 16 1.739 32 30 0.695 2 0 1.734 34 14 0.589 4

Total observations: 376 pairs 392 pairs 362 pairs 376 pairs 346 pairs

Family Min. MDD
Max. MDD

Asc. Order
Desc. Order

FS Disabled
FS Enabled

RC Disabled
RC Enabled

0 Median ∞ 0 Median ∞ 0 Median ∞ 0 Median ∞
Cartesian Products of Cycles 4 1.262 0 0 2.866 28 0 1 0 0 1.36 0

Total valid observations: 48 pairs 108 pairs 94 pairs 94 pairs
Covering Code Graphs 0 1.567 0 64 2.688 0 0 1 0 0 1.314 0

Total valid observations: 48 pairs 128 pairs 96 pairs 96 pairs
Hex Rook Graphs 4 0.871 0 28 2.614 0 0 1 0 0 1.07 0

Total valid observations: 84 pairs 176 pairs 162 pairs 162 pairs
Kneser Graphs 0 0.873 6 64 1.964 2 0 1 0 0 1.043 2

Total valid observations: 22 pairs 72 pairs 39 pairs 40 pairs
Knight Graphs 12 0.982 0 36 15.63 0 0 1 0 0 1.311 0

Total valid observations: 64 pairs 128 pairs 110 pairs 110 pairs
Queen Graphs 4 1.96 2 4 5.847 10 0 1 0 0 1.418 2

Total valid observations: 44 pairs 94 pairs 87 pairs 88 pairs
Triangular Grid Graphs 6 0.944 4 0 3.221 18 0 1 0 0 1.533 2

Total valid observations: 62 pairs 126 pairs 117 pairs 118 pairs
All Families (aggregate) 30 0.998 12 196 3.418 58 0 1 0 0 1.281 6

Total valid observations: 372 pairs 832 pairs 705 pairs 708 pairs
All Families (equal weight) 30 0.982 12 196 2.866 58 0 1 0 0 1.314 6

Total valid observations: 372 pairs 832 pairs 705 pairs 708 pairs

4.6 Comparison of Framework Algorithms

Tables 4.13 - 4.19 summarize the algorithms with the best maximum running time for each

of the 55 graphs in the input dataset. For each graph, the algorithm with the best maximum

time from each broad variant (fixed order, DD and MDD) is shown, along with its time. All

variants whose running time was within 1% of the true best time are considered tied for the



97

best time. The top-performing variant is shaded in gray.

For the queen graphs and the triangular grid graphs, the MDD-bounding algorithms

with MDD vertex selection are unanimously the best on the tested graphs. MDD algorithms

with candidate degree bounding have the best performance among the larger code graphs

and most of the hex rook graphs. Although there are a few cases where the domination

degree-based algorithms have decisively better performance on large graphs, the majority of

cases where DD-based algorithms win outright are on very small graphs, where the overall

spread of running times among the three categories is far less than one second.

As noted in Section 4.5.1, even though the MDD-bounding algorithms with the min.

CD vertex selection rule have generally better performance on the family of queen graphs

as a whole, Table 4.18 shows that MDD-bounding algorithms with the min. MDD and

max. MDD vertex selection rules actually produce the best running times on these graphs.

The high performance of the min. MDD vertex selection rule on the large queen graphs

contributed to the choice of the min. MDD rule for the algorithm which was used to solve

open cases of the queen problem in Chapter 5.

Table 4.13: Comparison of Framework Algorithms - Maximum Times: Covering Code
Graphs

Graph n m

Best Algorithm
Fixed Ordering Domination Degree Max Dominator Degree
Vertex Time Selection N. FS RC Time Selection N. FS RC Time
Order (s) Rule Order (s) Rule Order (s)

Code1 (2, 6) 64 192 BFS 0.267 Min. CD desc N N 0.137 Min. CD desc N Y 0.074
Min. CD desc N Y 0.138 Min. CD desc Y Y 0.073
Min. CD desc Y N 0.137

Code2 (2, 6) 64 672 BFS 0.001 Min. CD asc Y N 0.003 Min. CD asc N Y 0.005
Code3 (2, 6) 64 1312 NONE Max. CD asc Y Y 0.001 Max. MDD asc Y Y 0.003

Min. CD asc N Y 0.001 Min. MDD asc Y Y 0.003
Min. CD asc Y Y 0.001

Code1 (2, 7) 128 448 BFS 11.04 Min. CD desc N Y 0.022 Max. MDD desc Y Y 0.002
Code2 (2, 7) 128 1792 BFS 5.16 Min. CD desc N Y 5.39 Min. CD desc N Y 1.763

Min. CD desc Y Y 1.768
Code3 (2, 7) 128 4032 BFS 0.001 Max. CD asc N Y 0.008 Max. MDD asc N Y 0.011

Max. CD asc Y Y 0.008 Min. CD asc Y Y 0.011
Min. CD asc N Y 0.008 Min. MDD asc Y Y 0.011
Min. CD asc Y Y 0.008

Code3 (2, 8) 256 11776 BFS 0.155 Min. CD asc N Y 0.427 Min. CD asc Y Y 0.519
Min. CD asc Y Y 0.429

Code2 (3, 5) 243 6075 NONE Min. CD desc N Y 857.3 Min. CD desc N Y 412.2
Min. CD desc Y Y 860.3 Min. CD desc Y Y 413.8



98

Table 4.14: Comparison of Framework Algorithms - Maximum Times: Hex Rook Graphs

Graph n m

Best Algorithm
Fixed Ordering Domination Degree Max Dominator Degree

Vertex Time Selection N. FS RC Time Selection N. FS RC Time
Order (s) Rule Order (s) Rule Order (s)

HR (10) 55 495 Max. Deg. 0.01 Min. CD asc N N 0.01 Min. CD asc Y N 0.013
Min. CD asc Y N 0.01

HR (11) 66 660 BFS 0.028 Min. CD desc N N 0.011 Min. CD desc N Y 0.01
Min. CD desc Y N 0.011 Min. CD desc Y Y 0.01

HR (12) 78 858 Max. Deg. 0.306 Min. CD asc N N 0.158 Min. CD asc N N 0.157
Min. CD asc N Y 0.158

HR (13) 91 1092 BFS 0.463 Min. CD desc N N 0.051 Min. CD desc N Y 0.059
Min. CD desc Y N 0.051 Min. CD desc Y Y 0.06

HR (14) 105 1365 Min. Deg. 11.68 Min. CD asc N N 2.705 Min. CD asc N N 2.159
Min. CD asc Y N 2.695 Min. CD asc N Y 2.142

Min. CD asc Y Y 2.154
HR (15) 120 1680 BFS 15.01 Min. CD desc N N 1.041 Min. CD desc Y Y 0.897

Min. CD desc N Y 1.049
Min. CD desc Y N 1.041

HR (16) 136 2040 Max. Deg. 543.4 Min. CD asc N N 55.25 Min. CD asc N N 41.65
Min. CD asc Y N 55.23 Min. CD asc N Y 41.87

HR (17) 153 2448 BFS 690 Min. CD desc N Y 33.35 Min. CD desc Y Y 20.67
Min. CD desc Y Y 33.45

HR (18) 171 2907 NONE Min. CD asc N N 1286 Min. CD asc N N 1414
Min. CD asc Y N 1283 Min. CD asc N Y 1419

HR (19) 190 3420 NONE Min. CD desc N Y 878.7 Min. CD desc N Y 433
Min. CD desc Y N 885 Min. CD desc Y Y 433.6

HR (20) 210 3990 NONE Min. CD desc N Y 2634 Min. CD desc Y Y 1145
Min. CD desc Y Y 2651

Table 4.15: Comparison of Framework Algorithms - Maximum Times: Kneser Graphs

Graph n m

Best Algorithm
Fixed Ordering Domination Degree Max Dominator Degree

Vertex Time Selection N. FS RC Time Selection N. FS RC Time
Order (s) Rule Order (s) Rule Order (s)

Kneser (8, 3) 56 280 BFS 0.018 Min. CD asc N N 0.008 Min. CD asc N Y 0.01
Min. CD asc Y N 0.008

Kneser (9, 3) 56 280 Min. Deg. 0.017 Min. CD asc N N 0.007 Min. CD asc N Y 0.011
Min. CD asc Y N 0.007

Kneser (9, 4) 126 315 NONE Min. CD desc N Y 2042 Min. CD desc N Y 420.8
Kneser (10, 3) 56 280 Max. Deg. 0.019 Min. CD asc N N 0.008 Min. CD asc N Y 0.008

Min. CD asc Y N 0.008 Min. CD asc Y Y 0.008
Kneser (11, 3) 56 280 Min. Deg. 0.019 Min. CD asc N N 0.007 Min. CD asc Y Y 0.009

Min. CD asc Y N 0.007



99

Table 4.16: Comparison of Framework Algorithms - Maximum Times: Knight Graphs

Graph n m

Best Algorithm
Fixed Ordering Domination Degree Max Dominator Degree
Vertex Time Selection N. FS RC Time Selection N. FS RC Time
Order (s) Rule Order (s) Rule Order (s)

Knight (4) 16 24 BFS 0 Min. CD asc N N 0 Max. MDD asc Y N 0.001
Min. CD asc Y N 0

Knight (5) 25 48 Min. Deg. 0 Min. CD asc N N 0 Max. CD asc Y Y 0.002
Min. CD asc Y N 0 Min. CD asc Y Y 0.002

Knight (6) 36 80 Min. Deg. 0.001 Min. CD asc Y N 0 Min. CD asc Y N 0.002
Knight (7) 49 120 Min. Deg. 0.012 Min. CD asc N N 0.008 Max. MDD desc N Y 0.002

Min. CD asc Y N 0.008
Knight (8) 64 168 Min. Deg. 0.286 Max. CD desc Y Y 0.066 Max. MDD desc Y Y 0.008
Knight (9) 81 224 Min. Deg. 0.559 Min. CD desc N Y 0.03 Min. CD desc N Y 0.014
Knight (10) 100 288 Min. Deg. 8.263 Min. CD desc N Y 0.067 Min. CD desc N Y 0.03
Knight (11) 121 360 Min. Deg. 3017 Min. CD desc N N 19.81 Min. CD desc N Y 6

Min. CD desc Y N 19.81

Table 4.17: Comparison of Framework Algorithms - Maximum Times: Cartesian Products
of Cycles

Graph n m

Best Algorithm
Fixed Ordering Domination Degree Max Dominator Degree
Vertex Time Selection N. FS RC Time Selection N. FS RC Time
Order (s) Rule Order (s) Rule Order (s)

C8 � C8 64 128 BFS 0.725 Min. CD asc N N 0.712 Min. CD asc N N 0.352
C9 � C9 81 162 BFS 0.679 Min. CD desc N N 0.182 Min. CD desc N Y 0.026

Min. CD desc Y N 0.183
C10 � C10 100 200 BFS 0.71 Min. CD desc N N 1.722 Min. CD desc N Y 0.084

Min. CD desc Y Y 0.084
C11 � C11 121 242 BFS 449.6 Min. CD desc N N 154 Min. CD desc N Y 4.821
C12 � C12 144 288 NONE Min. CD asc N N 3926 Min. CD desc N Y 180.6
C13 � C13 169 338 NONE NONE Min. CD desc N Y 5480
C14 � C14 196 392 NONE NONE NONE
C15 � C15 225 450 NONE NONE NONE

Table 4.18: Comparison of Framework Algorithms - Maximum Times: Queen Graphs

Graph n m

Best Algorithm
Fixed Ordering Domination Degree Max Dominator Degree

Vertex Time Selection N. FS RC Time Selection N. FS RC Time
Order (s) Rule Order (s) Rule Order (s)

Queen (10) 100 1470 Max. Deg. 0.172 Max. CD desc N Y 0.016 Max. MDD desc N Y 0.014
Min. Deg. 0.171 Max. CD desc Y Y 0.016 Max. MDD desc Y Y 0.014

Queen (11) 121 1980 Max. Deg. 0.281 Max. CD desc N Y 0.018 Max. MDD desc N Y 0.01
Queen (12) 144 2596 Max. Deg. 12.13 Max. CD desc N Y 0.438 Max. MDD desc N Y 0.166

Max. CD desc Y Y 0.439
Queen (13) 169 3328 BFS 216.7 Min. CD asc N N 10.28 Min. MDD desc N Y 3.412

Min. CD asc Y N 10.27
Queen (14) 196 4186 BFS 6646 Min. CD asc N N 177.1 Min. MDD desc N Y 96.59

Min. Deg. 6693 Min. CD asc Y N 177.1 Min. MDD desc Y Y 96.74
Queen (15) 225 5180 NONE Min. CD asc N N 4277 Min. MDD desc N Y 3069

Min. CD asc Y N 4302 Min. MDD desc Y Y 3075



100

Table 4.19: Comparison of Framework Algorithms - Maximum Times: Triangular Grid
Graphs

Graph n m

Best Algorithm
Fixed Ordering Domination Degree Max Dominator Degree
Vertex Time Selection N. FS RC Time Selection N. FS RC Time
Order (s) Rule Order (s) Rule Order (s)

TG (11) 66 165 Min. Deg. 0.132 Min. CD asc N N 0.138 Max. MDD desc N Y 0.02
Min. CD asc Y N 0.139

TG (12) 78 198 Min. Deg. 0.655 Min. CD desc N N 0.301 Min. MDD desc N Y 0.058
Min. CD desc Y N 0.302

TG (13) 91 234 Min. Deg. 6.038 Min. CD desc N N 1.253 Min. MDD desc N Y 0.147
TG (14) 105 273 Min. Deg. 82.84 Min. CD desc N N 9.839 Min. MDD desc N Y 0.278
TG (15) 120 315 Min. Deg. 249.8 Min. CD asc N N 40 Min. MDD desc N Y 2.479

Min. CD asc Y N 40.22
TG (16) 136 360 Min. Deg. 6797 Min. CD asc N N 568 Min. MDD desc N Y 22.3

Min. CD asc Y N 570.8
TG (17) 153 408 NONE Min. CD desc N N 3121 Min. MDD desc N Y 112.9
TG (18) 171 459 NONE NONE Min. MDD desc N Y 842.9

Min. MDD desc Y Y 845.5
TG (19) 190 513 NONE NONE NONE

4.7 Comparison with SageMath

The SageMath suite [1] provides a dominating set solver which uses mixed integer-linear

programming to find a minimum dominating set of a graph. The integer program used

to solve the dominating set problem is given in Section 1.3. The solver does not have

options to generate all dominating sets of a given size. SageMath supports several integer-

linear programming solvers, but uses the GLPK solver by default. For these experiments,

SageMath with GLPK was used to provide a reference point for comparison with the family

of new algorithms created during this research.

The SageMath dominating set solver was run on all of the inputs used in the previous

experiments and the minimum, maximum and average times of SageMath on the 10 per-

mutations of each input graph was computed. Since the SageMath solver does not provide

information on call tree size, and since the structure of the underlying algorithm is not com-

parable to Framework 3.1, the only meaningful comparison between the two is running time.

The times were calculated from the beginning of the dominating set computation (after the

input graph had already been read) until the computed minimum dominating set was re-



101

turned. Tables 4.20 - 4.26 show the maximum time of SageMath on each input graph along

with the best algorithm based on Framework 3.1 and its maximum time. The overall best

algorithm is highlighted in gray.

Table 4.20: SageMath vs. Framework 3.1 - Maximum Times: Covering Code Graphs

Graph n m γ
SageMath Framework 3.1

Max. Time (s) Variant Max. Time (s)
Code1 (2, 6) 64 192 12 0.27 MDD Bounding (Min. CD, desc, FS, RC) 0.073
Code2 (2, 6) 64 672 4 0.041 Fixed Order (BFS) 0.001
Code3 (2, 6) 64 1312 2 0.055 DD Bounding (Max. CD, asc, FS, RC) 0.001
Code1 (2, 7) 128 448 16 0.021 MDD Bounding (Max. MDD, desc, FS, RC) 0.002
Code2 (2, 7) 128 1792 7 21.25 MDD Bounding (Min. CD, desc, no FS, RC) 1.763
Code3 (2, 7) 128 4032 2 0.035 Fixed Order (BFS) 0.001
Code3 (2, 8) 256 11776 4 13.24 Fixed Order (BFS) 0.155
Code2 (3, 5) 243 6075 8 N/A MDD Bounding (Min. CD, desc, no FS, RC) 412.2

Table 4.21: SageMath vs. Framework 3.1 - Maximum Times: Hex Rook Graphs

Graph n m γ
SageMath Framework 3.1

Max. Time (s) Variant Max. Time (s)
HR (10) 55 495 5 0.223 DD Bounding (Min. CD, asc, no FS, no RC) 0.01
HR (11) 66 660 5 0.8 MDD Bounding (Min. CD, desc, no FS, RC) 0.01
HR (12) 78 858 6 4.033 MDD Bounding (Min. CD, asc, no FS, no RC) 0.157
HR (13) 91 1092 6 3.799 DD Bounding (Min. CD, desc, FS, no RC) 0.051
HR (14) 105 1365 7 127.1 MDD Bounding (Min. CD, asc, no FS, RC) 2.142
HR (15) 120 1680 7 78.45 MDD Bounding (Min. CD, desc, FS, RC) 0.897
HR (16) 136 2040 8 N/A MDD Bounding (Min. CD, asc, no FS, no RC) 41.65
HR (17) 153 2448 8 6438 MDD Bounding (Min. CD, desc, FS, RC) 20.67
HR (18) 171 2907 9 N/A DD Bounding (Min. CD, asc, FS, no RC) 1283
HR (19) 190 3420 9 N/A MDD Bounding (Min. CD, desc, no FS, RC) 433
HR (20) 210 3990 9 N/A MDD Bounding (Min. CD, desc, FS, RC) 1145

Table 4.22: SageMath vs. Framework 3.1 - Maximum Times: Kneser Graphs

Graph n m γ
SageMath Framework 3.1

Max. Time (s) Variant Max. Time (s)
Kneser (8, 3) 56 280 7 0.142 DD Bounding (Min. CD, asc, FS, no RC) 0.008
Kneser (9, 3) 56 280 7 0.106 DD Bounding (Min. CD, asc, no FS, no RC) 0.007
Kneser (9, 4) 126 315 26 5677 MDD Bounding (Min. CD, desc, no FS, RC) 420.8
Kneser (10, 3) 56 280 7 0.111 DD Bounding (Min. CD, asc, no FS, no RC) 0.008
Kneser (11, 3) 56 280 7 0.116 DD Bounding (Min. CD, asc, no FS, no RC) 0.007



102

Table 4.23: SageMath vs. Framework 3.1 - Maximum Times: Knight Graphs

Graph n m γ
SageMath Framework 3.1

Max. Time (s) Variant Max. Time (s)
Knight (4) 16 24 4 0.01 DD Bounding (Min. CD, asc, FS, no RC) 0
Knight (5) 25 48 5 0.012 DD Bounding (Min. CD, asc, FS, no RC) 0
Knight (5) 25 48 5 0.012 DD Bounding (Min. CD, asc, no FS, no RC) 0
Knight (6) 36 80 8 0.012 DD Bounding (Min. CD, asc, FS, no RC) 0
Knight (7) 49 120 10 0.014 MDD Bounding (Max. MDD, desc, no FS, RC) 0.002
Knight (8) 64 168 12 0.014 MDD Bounding (Max. MDD, desc, FS, RC) 0.008
Knight (9) 81 224 14 0.03 MDD Bounding (Min. CD, desc, no FS, RC) 0.014
Knight (10) 100 288 16 0.18 MDD Bounding (Min. CD, desc, no FS, RC) 0.03
Knight (11) 121 360 21 0.713 MDD Bounding (Min. CD, desc, no FS, RC) 6

Table 4.24: SageMath vs. Framework 3.1 - Maximum Times: Cartesian Products of Cycles

Graph n m γ
SageMath Framework 3.1

Max. Time (s) Variant Max. Time (s)
C8 � C8 64 128 16 0.817 MDD Bounding (Min. CD, asc, no FS, no RC) 0.352
C9 � C9 81 162 18 0.121 MDD Bounding (Min. CD, desc, no FS, RC) 0.026
C10 � C10 100 200 20 0.017 MDD Bounding (Min. CD, desc, FS, RC) 0.084
C11 � C11 121 242 27 2.501 MDD Bounding (Min. CD, desc, no FS, RC) 4.821
C12 � C12 144 288 32 20.46 MDD Bounding (Min. CD, desc, no FS, RC) 180.6
C13 � C13 169 338 38 378.4 MDD Bounding (Min. CD, desc, no FS, RC) 5480
C14 � C14 196 392 42 36.85 NONE N/A
C15 � C15 225 450 45 0.031 NONE N/A

Table 4.25: SageMath vs. Framework 3.1 - Maximum Times: Queen Graphs

Graph n m γ
SageMath Framework 3.1

Max. Time (s) Variant Max. Time (s)
Queen (10) 100 1470 5 2.74 MDD Bounding (Max. MDD, desc, no FS, RC) 0.014
Queen (11) 121 1980 5 7.488 MDD Bounding (Max. MDD, desc, no FS, RC) 0.01
Queen (12) 144 2596 6 113.8 MDD Bounding (Max. MDD, desc, no FS, RC) 0.166
Queen (13) 169 3328 7 223.4 MDD Bounding (Min. MDD, desc, no FS, RC) 3.412
Queen (14) 196 4186 8 N/A MDD Bounding (Min. MDD, desc, no FS, RC) 96.59
Queen (15) 225 5180 9 N/A MDD Bounding (Min. MDD, desc, no FS, RC) 3069

Table 4.26: SageMath vs. Framework 3.1 - Maximum Times: Triangular Grid Graphs

Graph n m γ
SageMath Framework 3.1

Max. Time (s) Variant Max. Time (s)
TG (11) 66 165 13 0.019 MDD Bounding (Max. MDD, desc, no FS, RC) 0.02
TG (12) 78 198 15 0.019 MDD Bounding (Min. MDD, desc, no FS, RC) 0.058
TG (13) 91 234 17 0.029 MDD Bounding (Min. MDD, desc, no FS, RC) 0.147
TG (14) 105 273 19 0.036 MDD Bounding (Min. MDD, desc, no FS, RC) 0.278
TG (15) 120 315 21 0.051 MDD Bounding (Min. MDD, desc, no FS, RC) 2.479
TG (16) 136 360 24 0.095 MDD Bounding (Min. MDD, desc, no FS, RC) 22.3
TG (17) 153 408 27 0.159 MDD Bounding (Min. MDD, desc, no FS, RC) 112.9
TG (18) 171 459 30 0.554 MDD Bounding (Min. MDD, desc, no FS, RC) 842.9
TG (19) 190 513 33 1.129 NONE N/A



103

4.8 Choosing Representative Algorithms

The set of 52 algorithms covered by the experiments in this chapter is unwieldy in a practical

setting, since it is not feasible to investigate the performance of all variants before under-

taking a dominating set computation. The overall goal of the experiments was to produce

a small set of solvers which, together, would be useful for future research. This section

describes the selection of several high quality representative algorithms from the set of 51

variants of Framework 3.1 covered by the experiments. Section 4.8.1 ranks the variants by

their overall performance across all families, and Section 4.8.2 contains a discussion of the

performance of the different algorithms on each of the graph families studied. Based on

the data in both sections, the following variants were chosen as representatives and were

incorporated into the unidom program described in Chapter 6.

Fixed Order (BFS)
DD Bounding (Min. CD, asc, FS, no RC)
DD Bounding (Min. CD, desc, FS, no RC)
MDD Bounding (Min. CD, desc, no FS, RC)
MDD Bounding (Min. MDD, desc, no FS, RC)

Let A be the set of all 52 algorithms tested by the experiments in this chapter (SageMath

plus 51 variants of Framework 3.1). Let G be the set of all initial input graphs for the

experiment, such that for each graph G ∈ G, ten permutations of G were tested against all

algorithms in A. For A ∈ A, G ∈ G, let MaxTime(G,A) denote the maximum running time

of algorithm A over all of the 10 permutations of graph G used in the experiment. If A did

not finish on any of the permutations of G, then define MaxTime(G,A) =∞.

Several caveats are needed before a meaningful comparison of algorithms can be made.

First, while the input dataset for the experiments contained 55 graphs, many of these graphs

were solved in a very small amount of time by one of the tested solvers. Graphs for which a

solver was able to solve each of the 10 tested permutations in a small amount of time may be

considered ‘easy’ for the purposes of the domination problem, and while the ability of a solver



104

to handle easy graphs is important, the design of an algorithm for a computational search

to solve an open problem (such as computing the domination number of Queen (20)) would

likely benefit more from the experimental data for more difficult graphs. In this section, a

graph G in the input dataset is defined to be moderately difficult if

min
A∈A

[MaxTime(G,A)] ≥ 0.5 seconds.

Some of the comparisons in this section, particularly in Section 4.8.2, are constrained to the

set of 20 moderately difficult graphs instead of the complete input dataset of 55 graphs. The

set of experimental data for the 20 moderately difficult graphs is still quite large, since it

comprises running times for 52 algorithms on 200 permutations.

Second, a meaningful metric is needed to compare the running times of different algo-

rithms across multiple graphs. For example, to characterize the performance of an algorithm

A over the entire input dataset G, the average of MaxTime(G,A) across all graphs G ∈ G

would not be a reliable metric, since if A failed to finish on one graph, the average would

equal infinity. Additionally, even in cases where A finished on all graphs, the average would

be unreasonably biased by large running times. We propose a statistic called the average

time fraction to track the performance of a particular algorithm over a set of graphs, which

remedies both of the issues which affect the simple average of running times. Although this

metric is not a panacea, it can be useful to assess the comparative performance of algorithms,

especially within a group of similar graphs.

For a particular graph G and algorithm A, define MaxTimeFraction(G,A) to be the ratio

of the best maximum time of any algorithm in A on G to the maximum time of A on G:

MaxTimeFraction(G,A) =
minA′∈AMaxTime(G,A′)

MaxTime(G,A)
.

The peculiar ordering of numerator and denominator ensures that the resulting quantity will



105

be in the range [0, 1] and that, if algorithmA did not finish in graphG, MaxTimeFraction(G,A) =

0 (since MaxTime(G,A) = ∞ in such cases). Larger values of MaxTimeFraction(G,A) in-

dicate that the maximum time of algorithm A on G was close to the best time over all

algorithms.

Define the average time fraction of A with respect to a collection of graphs G and algo-

rithms A to be

AvgFrac(A,G,A) =
1

|G|
∑
G∈G

MaxTimeFraction(G,A).

Since MaxTimeFraction(G,A) has a normalized range, AvgFrac(A,G,A) can be used as a

general measurement of the performance of an algorithm A ∈ A across the entire dataset.

4.8.1 Overall Variant Comparison

The goal of the experiments documented in this chapter was to examine the impact of differ-

ent implementation decisions for Framework 3.1 with an eye toward producing high quality

general purpose dominating set algorithms. Chapter 6 describes the finished general purpose

solver, which includes several different implementations of algorithms based on Framework

3.1.

The tables in Sections 4.6 and 4.7 show that none of the tested algorithms stand out as

the single best option, but it is possible to narrow down the set of 51 tested variants to a

handful of high quality algorithms.

Table 4.6 shows the ‘best’ algorithm for each input graph, and one option for choosing

a high quality representative solver would be to simply take the set of algorithms which

appear in Table 4.6 most frequently. However, this does not account for cases where a

particular algorithm has good performance in a small number of cases but otherwise is very

uncompetitive. For example, it is possible that for all cases in Table 4.6, the second-place



106

algorithm is the same, and would therefore have very competitive performance on the entire

input dataset. Measuring the overall value of each algorithm across the entire input dataset

is difficult: simple metrics like the average running time are not useful due to the high

variation of running times across the dataset. The average time fraction proposed in the

previous section may provide a solution to this issue.

Table 4.27 shows the best 10 average time fractions of algorithms in A on all graphs, and

Table 4.28 shows the best 10 average time fractions of algorithms in A on the 20 ‘moderately

difficult’ graphs for which every solver had a maximum running time of at least 0.5 seconds.

Table 4.27: Best 10 average maximum time fractions of tested algorithms on the entire input
dataset.

Algorithm
Avg.

Fraction
SageMath 0.344
DD Bounding (Min. CD, asc, FS, no RC) 0.337
DD Bounding (Min. CD, asc, no FS, no RC) 0.329
MDD Bounding (Min. CD, asc, no FS, RC) 0.300
MDD Bounding (Min. CD, asc, FS, RC) 0.297
MDD Bounding (Min. CD, asc, no FS, no RC) 0.296
DD Bounding (Min. CD, asc, no FS, RC) 0.293
MDD Bounding (Min. CD, asc, FS, no RC) 0.292
DD Bounding (Min. CD, asc, FS, RC) 0.289
MDD Bounding (Min. CD, desc, no FS, RC) 0.275

Table 4.28: Best 10 average maximum time fractions of tested algorithms on the 20 moder-
ately difficult graphs in the input dataset.

Algorithm
Avg.

Fraction
MDD Bounding (Min. CD, desc, no FS, RC) 0.389
MDD Bounding (Min. CD, desc, FS, RC) 0.385
MDD Bounding (Min. CD, asc, FS, RC) 0.361
SageMath 0.360
MDD Bounding (Min. CD, asc, no FS, RC) 0.360
MDD Bounding (Min. CD, asc, no FS, no RC) 0.360
MDD Bounding (Min. CD, asc, FS, no RC) 0.351
MDD Bounding (Min. MDD, desc, no FS, RC) 0.322
MDD Bounding (Min. MDD, desc, FS, RC) 0.317
DD Bounding (Min. CD, asc, FS, no RC) 0.300



107

4.8.2 Comparison of Variants by Graph Family

All of the graph families used in the input dataset have open questions regarding domi-

nation number, and the data collected in these experiments can be used to guide future

computational research into the domination numbers of open cases. This section contains a

summary of the data for moderately difficult cases in each of the graph families, along with

recommendations of which algorithms to use in future computational research.

Many of the graphs in the input dataset were solved extremely quickly by one or more

variants. Although these cases are useful for designing a general purpose solver, an algo-

rithm’s performance on easier cases does not necessarily correlate to its performance on the

very long searches needed to solve open problems. For the data in this section, only those

graphs for which every variant of Framework 3.1 had a maximum running time across all

permutations of at least 0.5 seconds were considered. These graphs can be considered to be

the ‘moderately difficult’ members of the family, and are more likely to indicate the suitabil-

ity of an algorithm for hard cases than the graphs with extremely fast solution times since

the impact of constant factors (such as preprocessing overhead and ‘noise’ in the timings)

is minimized. Within each family of graphs, a small set of candidate algorithms was chosen

by taking all algorithms which displayed good performance on at least one of the graphs in

the family. The exact parameters for the selection varied between families of graphs due to

differing spreads of running times.

Of the covering code graphs, only two graphs were moderately difficult, Code2 (2, 7)

and Code2 (3, 5). The set of candidate algorithms was chosen to contain all variants whose

running time was at most 150% of the best running time for at least one of the two graphs.

This criteria produces a set of five candidates, of which the MDD Bounding (Min. CD,

desc, no FS, RC) and MDD Bounding (Min. CD, desc, FS, RC) variants have the best

performance on both graphs, with a slight advantage for the MDD Bounding (Min. CD,

desc, no FS, RC) variant. For this family, the MDD Bounding (Min. CD, desc, no FS, RC)



108

is therefore chosen as the best representative algorithm. Table 4.29 shows the maximum

times for all five candidates, along with the average time fraction for each candidate across

both graphs.

Table 4.29: Maximum times of Framework 3.1 variants on Covering Code graphs.

Algorithm
Time (seconds) Avg.

Code2 (2, 7) Code2 (3, 5) Frac.
MDD Bounding (Max. MDD, desc, FS, RC) 2.452 813.5 0.613
MDD Bounding (Max. MDD, desc, no FS, RC) 2.427 818.4 0.615
MDD Bounding (Min. CD, desc, FS, RC) 1.768 413.8 0.996
MDD Bounding (Min. CD, desc, FS, no RC) 3.616 551.7 0.617
MDD Bounding (Min. CD, desc, no FS, RC) 1.763 412.2 1.000
SageMath 21.25 − 0.041

The Hex Rook graphs HR (14) - HR (20) were all classified as moderately difficult. On

these graphs, a large number of variants were clustered very close to the best running time.

To choose a set of candidates, all variants whose maximum running times were at most 101%

of the best maximum running time on at least one of these graphs were chosen, producing a

set of 7 candidates based on Framework 3.1. Table 4.30 shows the resulting comparison, with

the results for SageMath also shown, even though SageMath would not qualify as a candidate

by the rule above, along with the average time fraction for each candidate. There is no clear

winner among the candidates. The MDD Bounding (Min. CD, desc, FS, RC) displays very

impressive performance on several graphs, but does not finish on others. Among the variants

that finished on all of the graphs, the MDD Bounding (Min. CD, asc, no FS, RC) is chosen

as the representative algorithm, due to its high performance on the largest graph (HR (20))

and its reasonably good performance on all other graphs.



109

Table 4.30: Maximum times of Framework 3.1 variants on Hex Rook graphs.

Algorithm
Time (seconds) Avg.

HR (14) HR (15) HR (16) HR (17) HR (18) HR (19) HR (20) Frac.
DD Bounding (Min. CD, asc, FS, no RC) 2.695 2.875 55.23 62.3 1283 1427 5621 0.529
DD Bounding (Min. CD, asc, no FS, no RC) 2.705 2.874 55.25 62.34 1286 1435 5695 0.527
MDD Bounding (Min. CD, asc, FS, RC) 2.154 3.693 42.62 56.79 1542 1330 5067 0.566
MDD Bounding (Min. CD, asc, no FS, RC) 2.142 3.743 41.87 57.73 1419 1320 5078 0.579
MDD Bounding (Min. CD, asc, no FS, no RC) 2.159 3.702 41.65 56.71 1414 1334 5313 0.578
MDD Bounding (Min. CD, desc, FS, RC) − 0.897 − 20.67 − 433.6 1145 0.571
MDD Bounding (Min. CD, desc, no FS, RC) − 0.906 − 20.88 − 433 1160 0.567
SageMath 127.1 78.45 − 6438 − − − 0.004

Only one graph from each of the Kneser and Knight graph families was classified as

moderately difficult. Tables 4.31 and 4.32 show the results of a comparison of candidates on

these graphs. For the Kneser graphs, the candidates were selected to be algorithms whose

maximum running time was at most 200% of the best maximum running time. For the

lone moderately difficult Knight graph, SageMath was the clear best solver. To compare the

variants of Framework 3.1, the candidates were selected to be algorithms whose maximum

running time was at most 150% of the best maximum running time among variants of

Framework 3.1.

The best Framework 3.1 variant for the Kneser (9, 4) was MDD Bounding (Min. CD,

desc, no FS, RC), with MDD Bounding (Min. CD, desc, FS, RC) also demonstrating good

performance. Since the only difference between these two variants is the force-stop optimiza-

tion, the time difference appears to be entirely due to overhead related to the optimization,

so MDD Bounding (Min. CD, desc, no FS, RC) is chosen as the representative algorithm

for this case. Since this choice is based on data for only one graph, further study is needed

to identify a high quality solver for Kneser graphs.

The same situation occurred for Knight (11): MDD Bounding (Min. CD, desc, no FS,

RC) displayed the best performance among Framework 3.1 variants, with MDD Bounding

(Min. CD, desc, FS, RC) also performing well. Based on the limited data available, the

MDD Bounding (Min. CD, desc, no FS, RC) variant is the clear choice for a representative

algorithm among the framework algorithms, but is still eclipsed by SageMath.



110

Table 4.31: Maximum times of Framework 3.1 variants on Kneser graphs.

Algorithm
Time (seconds)

Kneser (9, 4)
MDD Bounding (Min. CD, asc, FS, RC) 839.2
MDD Bounding (Min. CD, asc, FS, no RC) 836.6
MDD Bounding (Min. CD, asc, no FS, RC) 778.3
MDD Bounding (Min. CD, asc, no FS, no RC) 817.9
MDD Bounding (Min. CD, desc, FS, RC) 438
MDD Bounding (Min. CD, desc, FS, no RC) 576.2
MDD Bounding (Min. CD, desc, no FS, RC) 420.8
MDD Bounding (Min. CD, desc, no FS, no RC) 558.7
SageMath 5677

Table 4.32: Maximum times of Framework 3.1 variants on Knight graphs.

Algorithm
Time (seconds)

Knight (11)
MDD Bounding (Min. CD, desc, FS, RC) 6.117
MDD Bounding (Min. CD, desc, FS, no RC) 8.144
MDD Bounding (Min. CD, desc, no FS, RC) 6
MDD Bounding (Min. CD, desc, no FS, no RC) 8.029
SageMath 0.713

Five graphs from the set of Cartesian products of cycles were moderately difficult. As with

the Knight graphs, SageMath was the best solver for all five cases. None of the framework

algorithms finished on C14 � C14 or C15 � C15. Table 4.33 therefore excludes these two

graphs from the comparison (and since it is a foregone conclusion that SageMath is a better

choice for the graph family, the goal of the comparison is to track which framework variant is

most competitive). Algorithms whose maximum running time was within 500% of the best

maximum running time of any variant of Framework 3.1 were chosen as candidates, yielding

a set of nine candidates. Among the candidates, the MDD Bounding (Min. CD, desc, no FS,

RC) variant displays the best performance in all cases, with very little serious competition

from the other candidates, and is the only candidate to finish on all three graphs (although,

as mentioned previously, it did not finish on two of the graphs in the family).



111

Table 4.33: Maximum times of Framework 3.1 variants on Cartesian Products of Cycles.

Algorithm
Time (seconds) Avg.

C11 � C11 C12 � C12 C13 � C13 Frac.
MDD Bounding (Min. CD, asc, FS, RC) 18.74 448.6 − 0.060
MDD Bounding (Min. CD, asc, FS, no RC) 18.18 440.3 − 0.061
MDD Bounding (Min. CD, asc, no FS, RC) 17.59 453.6 − 0.062
MDD Bounding (Min. CD, asc, no FS, no RC) 16.92 403.5 − 0.066
MDD Bounding (Min. CD, desc, FS, RC) 5.413 183.8 5807 0.213
MDD Bounding (Min. CD, desc, FS, no RC) 8.355 241.4 − 0.128
MDD Bounding (Min. CD, desc, no FS, RC) 4.821 180.6 5480 0.234
MDD Bounding (Min. CD, desc, no FS, no RC) 7.896 241.4 7176 0.151
MDD Bounding (Min. MDD, desc, no FS, RC) 23.45 1212 − 0.041
SageMath 2.501 20.46 378.4 1.000

Three queen graphs were classified as moderately difficult: Queen (13) ,Queen (14) and

Queen (15). Algorithms whose maximum running time were at most 150% of the best max-

imum running time on any of these graphs were chosen as candidates, yielding six variants.

Among these, the MDD Bounding (Min. MDD, desc, no FS, RC) displays the best perfor-

mance in all cases, with MDD Bounding (Min. MDD, desc, FS, RC) also displaying good

performance. As with the Knight graphs and Kneser graphs, the tight correlation of these

two variants appears to be related to the force-stop optimization having little impact on the

computation besides contributing overhead. The representative for this family was therefore

chosen to be the MDD Bounding (Min. MDD, desc, no FS, RC) variant. Although the

queen graphs represent only a small part of the input dataset for the experiments in this

chapter, the results for the moderately difficult queen graphs were very useful for choosing

a solver to solve open cases of the queen problem (documented in Chapter 5).

Table 4.34: Maximum times of Framework 3.1 variants on Queen graphs.

Algorithm
Time (seconds) Avg.

Queen (13) Queen (14) Queen (15) Frac.
DD Bounding (Min. CD, asc, FS, no RC) 10.27 177.1 4302 0.530
DD Bounding (Min. CD, asc, no FS, RC) 10.74 185.7 4456 0.509
DD Bounding (Min. CD, asc, no FS, no RC) 10.28 177.1 4277 0.532
MDD Bounding (Min. CD, asc, FS, RC) 10.11 184.4 4179 0.532
MDD Bounding (Min. MDD, desc, FS, RC) 3.468 96.74 3075 0.994
MDD Bounding (Min. MDD, desc, no FS, RC) 3.412 96.59 3069 1.000
SageMath 223.4 − − 0.005

The four graphs TG (15) ,TG (16) ,TG (17) and TG (18) from the triangular grid graphs



112

were classified as moderately difficult. SageMath had the best performance on all of these

graphs. To compare variants of Framework 3.1, all algorithms whose maximum running time

was at most 150% of the best maximum running time among variants of the framework were

chosen as candidates. Among these, the MDD Bounding (Min. MDD, desc, no FS, RC)

variant displayed the best performance among framework algorithms in all cases, with the

corresponding ‘FS’ variant close behind. However, the advantage of SageMath in all cases is

so great that none of the Framework 3.1 variants are competitive.

Table 4.35: Maximum times of Framework 3.1 variants on Triangular Grid graphs.

Algorithm
Time (seconds) Avg.

TG (15) TG (16) TG (17) TG (18) Frac.
MDD Bounding (Min. CD, desc, FS, RC) 3.231 35.33 151 3260 0.005
MDD Bounding (Min. CD, desc, no FS, RC) 3.065 34.13 149.2 3141 0.005
MDD Bounding (Min. MDD, desc, FS, RC) 2.598 23.21 117.8 845.5 0.006
MDD Bounding (Min. MDD, desc, no FS, RC) 2.479 22.3 112.9 842.9 0.007
SageMath 0.051 0.095 0.159 0.554 1.000



113

Chapter 5

New Domination Results for Queen

Problems

This chapter describes several new results on queen problems, including solutions to several

open cases of the queen domination problem, queen independent domination problem and the

border queen problem. A summary of the solved cases is presented in Table 5.1 below. The

solver variant used for the queen graph cases was the ‘MDD Bounding (Min. MDD, desc, no

FS, RC)’ variant, which demonstrated high performance on queen graphs in the experiments

in Chapter 4. Several modifications were made to the basic algorithm for the computations

in this chapter. Sections 5.1 and 5.2 describe these enhancements. In addition, Section 5.5

presents a new set of upper bounds on the border queen problem using a classification for

symmetric border sets. The solved cases of the queen domination problem are significant

advances for such a difficult problem.

Most of the results in this chapter build on previous results, which were summarized

concisely in an article by Kearse and Gibbons [42]. The results in [42] span many of the

domination parameters for queen graphs, and include reports of the number of dominat-

ing sets and independent dominating sets of various sizes up to isomorphism. The results



114

presented in this chapter follow a similar protocol.

Table 5.1 gives the minimum orders of dominating sets, independent dominating sets and

border dominating sets for 10 ≤ n ≤ 24. The new results are in red/bold. Existing results

for the non-border problems are taken from [42], and results for the border problems are

taken from Sinko and Slater [56].

Table 5.1: Domination Numbers of Queen Graphs

n 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

γ(Queen (n)) 5 5 6 7 8 9 9 9 9 10 11 11 12 12 13

i(Queen (n)) 5 5 7 7 8 9 9 9 10 11 11 11 12 13 13

bor (Queen (n)) 6 9 10 9 12 13 10 14 16 13 18 19 14 21 22

5.1 Computing Independent Dominating Sets

Algorithms based on Framework 3.1 can be used to find γ(Queen (n)) directly, and also to

find bor (Queen (n)) by restricting the initial candidate set C to contain only vertices on the

border of the board. To compute i(Queen (n)), however, additional logic is needed. One

option for using Framework 3.1 to generate independent dominating sets is to generate all

dominating sets of the desired size and discard all sets which are not independent (similar

to the method described later in this Chapter for generating rotated border constructions

for the border queen problem). However, for independent dominating sets, a small addition

to the logic in Framework 3.1 can ensure that the only recursive branches followed are those

which may produce an independent set.

Consider the following snippet of pseudocode, which is excerpted from lines 11 - 16 of

Framework 3.1.

T ← ∅
v ← An undominated vertex of G
for each vertex u ∈ N [v] ∩ C do

T ← T ∪ {u}



115

FindDominatingSet(G,P ∪ {u}, C − T,B, desired size)
end for

The candidate set provided in the recursive call to FindDominatingSet is C−T , where

C is the candidate set provided to the current invocation of FindDominatingSet and T is

a set containing all vertices which have been used as dominators in previous iterations of the

loop. Only vertices in the set C−T will be used as dominators in future branches. To ensure

that the resulting dominating set is an independent set, it suffices to ensure that no vertex

in the candidate set is ever adjacent to a vertex in the under-construction dominating set

P . Therefore, algorithms based on Framework 3.1 can be modified to generate independent

dominating sets by changing the C − T term in the recursive call to C − T −N [u].

5.2 Splitting Computation Among Processes

To leverage the extra computational power of multi-processor machines, the recursive back-

tracking search can be split among multiple processes by partitioning the search tree. For

an algorithm based on Framework 3.1, define the recursive depth of a particular call to

FindDominatingSet to be the size of the working set P when the FindDominatingSet

function begins. Define the search tree to be a rooted tree T containing a node for each call

to FindDominatingSet over the entire recursive search, with the parent of each node being

either the FindDominatingSet call which created the node. The initial call (which starts

the recursive process) has no parent and is the root of the tree. Note that since each recursive

call to FindDominatingSet (besides the initial call which starts recursion) is made after

adding a vertex to P , the number of elements in P in a call to FindDominatingSet is

always equal to the depth of the corresponding node in T .

To split a single recursive search over k ≥ 2 processes, the search tree is partitioned

among the k processes such that the overall set of nodes visited by the search is identical

(although some nodes may be visited by more than one process). Ideally, the partitioning



116

strategy should ensure that the number of duplicated nodes is minimized and that each

process receives an equal portion of the tree. Figure 5.1 shows two prospective strategies for

splitting the computation tree among 3 processes. In both diagrams, uncoloured nodes are

computed by all processes and coloured nodes are computed by a particular process only.

In Figure 5.1a, the tree is divided at the root into three contiguous subtrees, each of which

is computed by a different process. This partitioning strategy is reasonably straightforward

for implementations of Framework 3.1: the subtrees for each process can be determined by

the initial choice of vertex to add to the set. Additionally, splitting the computation at the

highest possible point in the tree has the advantage of minimizing the number of uncoloured

nodes, which must be computed separately by all processes. However, the strategy in Figure

5.1a lacks granularity. For example, suppose that the tree pictured in Figure 5.1a continues

beyond level 3. The structure of the tree is not known in advance, so there is a possibility

that most of the processors receive a very small subtree and one processor receives a huge

subtree that contains the majority of the nodes in the computation. This will result in a

very unbalanced partition of nodes among processes.

An alternative method is illustrated in Figure 5.1b. This method assigns a larger number

of subtrees among processes, with the set of subtrees given to each process sampled from

different branches of the full computation tree. Specifically, a starting depth is chosen, and

the nodes at that depth are divided among the different processors. For each depth d, let

Nd,0, Nd,1, . . . , Nd,k be the set of nodes of the tree at depth d from the root (which is the

initial call to FindDominatingSet), with the order of nodes corresponding to the order in

which they are traversed by the backtracking algorithm (since the algorithm is deterministic

and all processes compute the same set of nodes in the uncoloured part of the tree, this

ordering will be fixed and consistent for a particular graph and algorithm). If there are q

processes P0, P1, . . . , Pq−1, then the computation can be split among the processes at depth d

by assigning the subtrees of all nodes Nd,i with i ≡ j (mod q) to process Pj for 0 ≤ i ≤ k−1.



117

Depth 0

Depth 1

Depth 2

Depth 3

(a)

Depth 0

Depth 1

Depth 2

Depth 3

(b)

Figure 5.1: Two strategies for splitting a computation among multiple processes (indicated
by different colours).

This method requires more duplication of nodes among all processes, since for a particular

process to iterate over its assigned subtrees, it must compute all of the upper levels of the tree.

Since this multiprocessing strategy divides nodes among processes by arithmetic modulo the

number of processes q and identifying each process with a particular residue modulo q, it is

referred to in the remainder of this document (namely Chapter 6) as the res/mod approach.

To solve the open cases of the queen domination problems, the res/mod approach was used

to split the computation among a cluster of 64 processors. The splitting depth was chosen

by hand for each computation.



118

5.3 Counting Solutions up to Isomorphism

As mentioned in the introduction to this chapter, the most complete recent article regarding

solved cases of the queen domination problem is by Kearse and Gibbons [42] and presents

solutions to γ(Queen (n)) for n ≤ 19. The data produced by [42] also includes the number of

minimum dominating sets of queen graphs up to isomorphism for some of the solved cases.

Data for n ≤ 11 was produced earlier by Burger [12]. This data can be useful for reproducing

the results and verifying the correctness of an implementation of a domination solver. Tables

5.2, 5.3 and 5.4 summarize (respectively) the number of minimum dominating sets, minimum

independent dominating sets and minimum border dominating sets up to isomorphism. It

was not possible to count the total number of solutions up to isomorphism for all of the solved

cases (since exhaustively generating all sets up to isomorphism requires significantly longer

than solving the optimization problem), but the data in Tables 5.2, 5.3 and 5.4 contains

cases not covered by [42] and matches the data in [42] for all cases covered by that article.

This, combined with the fact that the solver implementation yielded correct results for all of

the experiments in Chapter 4, seems to indicate that the solver implementation was correct.

The new results in Table 5.2 are shown in red. None of the results in Table 5.3 are new,

and all of the counts in Table 5.4 are new (since previous research on border domination has

not covered the generation of all sets up to isomorphism).

Table 5.2: Number of Minimum Dominating Sets of Queen Graphs up to Isomorphism

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Size 1 2 3 3 4 5 5 5 5 6 7 8 9 9 9 9
# 1 3 37 1 13 638 21 1 1 1 41 588 25872 43 22 2



119

Table 5.3: Number of Minimum Independent Dominating Sets of Queen Graphs up to Iso-
morphism

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Size 1 3 3 4 4 5 5 5 5 7 7 8 9 9 9 10
# 1 2 2 17 1 91 16 1 1 105 4 55 1314 16 2 28

Table 5.4: Number of Minimum Border Dominating Sets of Queen Graphs up to Isomorphism

n 3 4 5 6 7 8 9 10 11 12
Size 2 2 3 4 5 6 6 6 9 10
# 4 1 6 19 75 174 1 1 1017 979

n 13 14 15 16 17 18 19 20 21 22
Size 9 12 13 10 14 16 13 18 19 14
# 4 1094 2635 2 32 1457 8 2080 6128 4

5.4 Certificates of Independent Dominating Sets

Figures 5.2, 5.3, 5.4, 5.5, and 5.6 show minimum independent dominating sets of Queen (19),

Queen (20), Queen (22), Queen (23), and Queen (24), respectively. For n = 20, 22 and 24,

these are also minimum dominating sets. See Section 5.5.2 for a discussion of the new border

queen results.



120

Figure 5.2: An independent dominating set of Queen (19) with size 11.

Figure 5.3: An independent dominating set of Queen (20) with size 11.



121

Figure 5.4: An independent dominating set of Queen (22) with size 12.

Figure 5.5: An independent dominating set of Queen (23) with size 13.



122

Figure 5.6: An independent dominating set of Queen (24) with size 13.

5.5 Rotated Border Constructions

This section presents several constructions for border dominating sets of Queen (n) which

use rotational symmetry. Two of the constructions were proved by Sinko and Slater in their

original paper [56], and the remainder are new to this work. The formal constraints of the

symmetric sets are given in Definition 5.1.

Definition 5.1. A rotated border construction (RBC) is defined to be a border dominating

set S of Queen (n) (with n ≥ 3) such that if vi,j is in S for 0 ≤ i, j ≤ n − 1, then exactly

one of the following conditions applies.

1. vi,j is a corner vertex: (i, j) ∈ {0, n− 1} × {0, n− 1}.

2. vi,j is a midpoint vertex: n is odd and vi,j lies at the midpoint of a border segment.



123

Formally,

(i, j) ∈ {(0, (n− 1)/2), (n− 1, (n− 1)/2), ((n− 1)/2, 0), ((n− 1)/2, n− 1)}

3. If vi,j is neither a corner or midpoint vertex, then all of the images of vi,j under

rotational symmetries of the board must also be in S. Specifically, each of the following

vertices must be in S:

0◦ rotation: vi,j

90◦ rotation: vj,(n−1)−i

180◦ rotation: v(n−1)−i,(n−1)−j

270◦ rotation: v(n−1)−j,i

Vertices falling into this case are called rotated vertices.

The three conditions of Definition 5.1 allow an RBC to be specified by providing the

status of each corner vertex, each midpoint vertex (if n is odd) and the status of each rotated

vertex in row 0 (since the remaining vertices can be obtained by applying all rotations to

the row 0 vertices). An RBC S over Queen (n) is minimal if there no proper subset T ⊂ S

is also an RBC. An RBC S over Queen (n) is minimum if, for all other RBCs T over

Queen (n), |T | ≥ |S|. Denote by MinRBC (n) the minimum size of an RBC over Queen (n).

One of the culminating results of this section, Theorem 5.22, establishes that MinRBC (n)

exists and is at most n for all n. Note that while a minimal RBC must by definition be a

border dominating set, it is not necessarily a minimal border dominating set. An RBC is

said to be degenerate if it consists entirely of corner and midpoint vertices and contains no

rotated vertices. Lemmas 5.2 and 5.3 establish that all RBCs of sufficiently large boards are

non-degenerate. The asymmetry between the even and odd cases is caused by the special

treatment afforded to midpoint vertices in the definition above (which, in turn, is guided by

the observations made regarding redundancy in Lemmas 5.4 and 5.6 later in this section).



124

Lemma 5.2. For even n ≥ 6, no degenerate RBCs exist.

Proof. Since no midpoint vertices exist for even n, a degenerate RBC can only contain

corner vertices, which can only dominate border vertices and vertices on the forward- or

back-diagonal. For all n ≥ 6, Queen (n) contains interior vertices which are not on either

diagonal, and therefore cannot be dominated by a degenerate RBC.

Lemma 5.3. For odd n ≥ 9, no degenerate RBCs exist.

Proof. For each odd n ≤ 7, a degenerate RBC exists (for example, by taking all corner and

midpoint vertices). For n ≥ 17, Theorem 2.1 (which establishes that any dominating set

of Queen (n) for odd n ≥ 13 must have size at least (n + 1)/2) prevents the existence of a

degenerate RBC since the maximum size of an RBC is eight. Let n ≥ 9 and consider the

set S of all 8 corner and midpoint vertices. Any degenerate RBC must be a subset of S. We

will show that vertex v1,2 is not dominated by any vertex in S.

The corner vertices cannot dominate v1,2, because it is neither a border vertex nor on

the forward- or back-diagonal of the board. Since n ≥ 9 implies that (n − 1)/2 ≥ 4, v1,2

cannot lie in the same row or column as a midpoint vertex. Additionally, v1,2 does not meet

Conditions 2.5 or 2.6 to have any of the four midpoint vertices as a neighbour:

• v0,(n−1)/2 : 0− 1 6= (n− 1)/2− 2 and 0− 1 6= 2− (n− 1)/2 since (n− 1)/2 ≥ 4.

• vn−1,(n−1)/2 : (n− 1)− 1 6= (n− 1)/2− 2 and (n− 1)− 1 ≥ 2− (n− 1)/2.

• v(n−1)/2,0 : (n− 1)/2− 1 6= 0− 2 and (n− 1)/2− 1 6= 2− 0 since (n− 1)/2 ≥ 4.

• v(n−1)/2,n−1 : (n− 1)/2− 1 6= (n− 1)− 2 and (n− 1)/2 6= 2− (n− 1)

Lemmas 5.2 and 5.3 imply that all RBCs for Queen (n) with n ≥ 9 must contain at least

one rotated vertex, with the effect that each of the four border segments will contain at



125

least one vertex. As a result, no corner or midpoint vertices are needed to cover the border

vertices, so the vertices uniquely dominated by corner or midpoint vertices must be interior.

Lemmas 5.4 and 5.6 use this fact to restrict the number of corner and midpoint vertices

needed for a minimal RBC. Additionally, Lemma 5.7 establishes that if only two midpoints

are needed, it is sufficient to use the midpoint of row 0 and the midpoint of column 0.

Lemma 5.4. Let S be an RBC of Queen (n) which contains two diagonally opposite corners.

If S is non-degenerate, then S is not minimal.

Proof. Suppose S is non-degenerate and contains two diagonally-opposite corners, and with-

out loss of generality, assume that the two corners are v0,0 and vn−1,n−1. Since S is non-

degenerate, it contains at least one rotated vertex, whose four rotations lie on the four

border segments and dominate all vertices on the border. The only other vertices in the

neighbourhoods of v0,0 and vn−1,n−1 are on the forward diagonal, and both of the corner

vertices dominate the diagonal. Therefore, the set T = S − {v0,0} is also an RBC, so S is

not minimal.

Corollary 5.5. For n ≥ 9, any minimal RBC on Queen (n) contains at most two corner

vertices. Moreover, any minimal RBC is a rotation of a minimal RBC whose only corner

vertices lie in row 0.

Lemma 5.6. Let S be an RBC of Queen (n) for odd n. If S is non-degenerate and contains

all four midpoint vertices, then S is not minimal.

Proof. Suppose S is non-degenerate and contains all four midpoint vertices. Consider the

midpoint v0,(n−1)/2 in row 0. Since S is non-degenerate, the four rotations of a rotated vertex

together cover all border vertices. Column (n− 1)/2 is dominated by both vn−1,(n−1)/2 and

v0,(n−1)/2. Additionally, since (n − 1)/2 − 0 = 0 − (n − 1)/2, v0,(n−1)/2 lies on the forward

diagonal of the left midpoint v(n−1)/2,0, and since (n−1)/2−0 = (n−1)−(n−1)/2, v0,(n−1)/2

lies on the back diagonal of the right midpoint v(n−1)/2,n−1. Therefore, all vertices on the



126

forward or back diagonal of v0,(n−1)/2 are dominated by other midpoints, so v0,(n−1)/2 does

not uniquely dominate any vertices and the set T = S − {v0,(n−1)/2} is also an RBC.

Lemma 5.7. Let S be a minimal, non-degenerate RBC of Queen (n) for odd n, and suppose

that S contains two midpoint vertices m1 and m2. Then m1 and m2 do not share a row or

a column.

Proof. Suppose m1 and m2 do share a row or column, and without loss of generality (by

rotation), assume that the two midpoints are v0,(n−1)/2 and vn−1,(n−1)/2. We will establish

that either S is not minimal or S is not a dominating set.

Since both v0,(n−1)/2 and vn−1,(n−1)/2 are present, there is at least one vertex which is

diagonally dominated by a midpoint vertex and not dominated by any other vertices (since

otherwise, one midpoint would suffice). Let vi,j be that vertex, and without loss of generality

(by reflecting the board if necessary) assume that vi,j lies in the quadrant 0 ≤ i, j < (n−1)/2

and therefore that its sole dominator in S is v0,(n−1)/2. Since vi,j is a back-diagonal neighbour

of v0,(n−1)/2, i+ j = (n− 1)/2. Since vi,j is not dominated by any vertices besides v0,(n−1)/2,

there cannot be a queen in row i or column j. Consider the vertex v(n−1)/2,j, which lies in

the middle row of the board. Since both midpoint vertices lie in column (n − 1)/2, vertex

v(n−1)/2,j cannot be row-dominated, and since there is no queen in column j, vertex v(n−1)/2,j

cannot be column-dominated. Therefore, one of the four border vertices which are diagonal

neighbours of v(n−1)/2,j is in S. Those neighbours are

v0,j+(n−1)/2 = 90◦ rotation of v(n−1)/2−j,0 = vi,0

vn−1,j+(n−1)/2 = 90◦ rotation of v(n−1)/2−j,n−1 = vi,n−1

v(n−1)/2−j,0 = vi,0 since i+ j = (n− 1)/2

v(n−1)/2+j,0 = v(n−1)−j,0 = 270◦ rotation of v0,j.

Each of the four vertices, if present in S, would be a rotated vertex, so all of its rotations



127

would also be in S. In all four cases, one of the rotations would place a queen in either row

i or column j, which is a contradiction.

Therefore, if any vertex vi,j meeting the conditions above exists, S is not a dominating

set. If no such vi,j exists, then one of the midpoint vertices in S is redundant and S is not

minimal.

Lemma 5.8 gives a condition for rotated vertices to be redundant, when their four rota-

tions are considered.

Lemma 5.8. Let S be an RBC of Queen (n), and let v0,j ∈ S be a rotated vertex. If

v0,(n−1)−j ∈ S, then S is not minimal. Specifically, all four rotations of v0,(n−1)−j are redun-

dant.

Proof. The four rotations of v0,j are

v0,j, vj,n−1, vn−1,(n−1)−j, v(n−1)−j,0.

The vertex v0,(n−1)−j is the image of v0,j under a horizontal reflection, and each of the

rotations of v0,(n−1)−j is the image of a rotation of v0,j under a horizontal or vertical reflection.

We will show that every vertex dominated by v0,(n−1)−j is also dominated by a rotation of

v0,j. By rotational symmetry, this is sufficient to establish that every rotation of v0,(n−1)−j

is redundant and S is not minimal.

Vertices in row 0 are clearly dominated by v0,j. Similarly, vertices in column (n− 1)− j

are dominated by the 180◦ rotation of v0,j, namely v(n−1),(n−1)−j.

The vertex v0,(n−1)−j is a diagonal neighbour of the 90◦ rotation of v0,j, namely vj,(n−1),

since (by Condition 2.5)

0− j = ((n− 1)− j)− (n− 1),

and vertex v0,(n−1)−j is a back-diagonal neighbour of the 270◦ rotation of v0,j, namely



128

v(n−1)−j,0, since (by Condition 2.6)

0− ((n− 1)− j) = 0− ((n− 1)− j).

Therefore, all diagonal neighbours of v0,(n−1)−j are dominated by rotations of v0,j. Since every

neighbour of v0,(n−1)−j is dominated by a rotation of v0,j, the vertex v0,(n−1)−j is redundant

and S is not minimal.

Corollary 5.9. If vi,j is any rotation of a rotated vertex of an RBC S of Queen (n), then

every vertex which neighbours any reflection of vi,j (horizontal, vertical, diagonal or back-

diagonal) is dominated by S.

Lemma 5.8 implies that if a rotated vertex v0,j is a member of an RBC S, a new RBC S ′

can be constructed by replacing the four rotations of v0,j with the four rotations of v0,(n−1)−j.

As a result, a minimal RBC containing a rotated vertex v0,j for j > n/2 corresponds to a

minimal RBC with v0,(n−1)−j and its rotations replacing the rotations of v0,j. This observation

allows a compact and convenient classification for RBCs, which is formalized in Definition

5.10. Theorem 5.11 gives conditions for a canonical RBC to exist.

Definition 5.10. A canonical RBC over Queen (n) is a non-degenerate RBC S in which

each of the following conditions is met.

1. All rotated vertices v0,j ∈ S have j < n/2.

2. Any corner vertices in S are in row 0, and if S contains only one corner vertex, then

it must be v0,0.

3. If n is odd, S contains at most 3 midpoint vertices. Specifically if S contains one

midpoint vertex, it must be v0,(n−1)/2, if S contains two midpoint vertices, they must be

v0,(n−1)/2 and v(n−1)/2,0, and if S contains 3 midpoint vertices, they must be v0,(n−1)/2,

v(n−1)/2,0 and vn−1,(n−1)/2



129

Theorem 5.11. Any minimal, non-degenerate RBC S has a canonical form.

Proof. By Lemma 5.8, any rotated vertex can be replaced by its horizontal reflection. There-

fore, S can be brought into compliance with Condition 1 in Definition 5.10 by replacing all

rotated vertices in the right half of row 0 with their reflections in the left half.

By Lemma 5.4, no more than two corner vertices are present in any minimal, non-

degenerate RBC, and, in general, the exact positions of corner vertices are irrelevant, so S

can be brought into compliance with Condition 2 in Definition 5.10 by only using corner

vertices from row 0.

Lemma 5.6 proves that no more than three midpoints will be present in a minimal, non-

degenerate RBC. By rotational symmetry, if only one midpoint is needed, it can be assumed

to be in row 0. Lemma 5.7 proves that if 2 midpoints are needed, they will not share a

row or column. Together, these conditions are sufficient to enforce the particular ordering

required by Condition 3 of Definition 5.10.

The restrictions in 5.10 allow an RBC to be completely specified by giving the number

of corner vertices (either 0, 1 or 2), the number of midpoint vertices (if n is odd, between 0

and 3, otherwise 0) and the rotated vertices in row 0 (which, by the definition, must all lie

to the left of the midpoint of row 0. Therefore, we propose a compact notation for RBCs

consisting of the first dn/2e cells of row 0, with queens in rotated cells denoted by Q and

queens in corner (or midpoint) cells denoted by C (or M), superscripted by the number of

corners (or midpoints) used.

In this section, a pattern specified by this notation will be generically called a rotated

pattern, since it may not always be correct to call it an RBC until it is proven to be a

dominating set. Although the rotated pattern notation only depicts the first half of row 0,

any references to the set of vertices corresponding to a rotated pattern is assumed to refer

to the set of vertices corresponding to all rotations of the pattern (including the 4 rotations

of all rotated vertices and the specified multiplicities of the corner and midpoint vertices).



130

(a) (b)

Figure 5.7: Examples of two canonical RBCs on n = 11.

The RBC corresponding to the rotated pattern

C2 Q Q

is shown in Figure 5.7a, and the RBC corresponding to the rotated pattern

Q Q M2

is shown in Figure 5.7b. Note that bor (Queen (11)) = 9, so the two RBCs shown in Figure

5.7 are not minimum border dominating sets.

The original paper on border domination by Sinko and Slater [56] included a theorem

which constructively proved two bounds on bor (Queen (n)). The constructions can be rep-

resented by canonical RBCs, and are re-stated in Theorems 5.12 and 5.13 below (the original

proof in [56] combines both into a single statement, but since the constructions have notable

differences, they are presented separately here). The theorems are rephrased for stylistic

consistency with the other theorems in this section, and the proofs have been adapted to use



131

the RBC notation introduced here.

Theorem 5.12 (Sinko and Slater [56]). If n ≡ 1 (mod 6), then bor (Queen (n)) ≤ 2(n−1)
3

+1.

Proof. Let n ≡ 1 (mod 6). If n = 1, then the statement holds since bor (Queen (1)) = 1.

Otherwise, assume n ≥ 7 and represent n as n = 6t + 1, where t ≥ 1 by the assumption

above. Note that there are (n + 1)/2 = 3t + 1 cells between the lower left corner and the

midpoint of row 0 (inclusive). We will show that the rotated pattern

C2 Q︸ ︷︷ ︸
t−1 repetitions

. . . M3 ,

which contains 2 + 4(t− 1) + 3 = 4t+ 1 = 2(n−1)
3

+ 1 cells, is an RBC.

Let S be the set of vertices corresponding to the rotated pattern above.

The four rotations of the pattern place a queen in every column c where c ≡ 0 (mod 3)

and every row r such that r ≡ 0 (mod 3). Therefore, every vertex vi,j where either i or j is

a multiple of 3 is dominated by a vertex in its row or column. Since 0 and n − 1 are both

multiples of 3, all border vertices are dominated.

The two cases below demonstrate that all vertices vi,j below the main diagonal (that is,

with i ≤ j) which do not fall into the cases above are dominated by a vertex in S.

1. i ≡ j (mod 3): Consider the vertex v0,j−i, which is a forward-diagonal neighbour of

vi,j. Since j − i ≡ 0 (mod 3), either v0,j−i is in S or v0,j−i is the horizontal reflection

of a vertex in S. In the former case, vi,j is dominated by v0,j−i. In the latter case, by

Corollary 5.9, vi,j is dominated by a reflection of v0,j−i.

2. i ≡ −j (mod 3): Consider the vertex v0,j+i, which is a back-diagonal neighbour of vi,j.

Since j + i ≡ 0, either v0,j+i is in S or v0,j+i is the horizontal reflection of a vertex in

S, and as above, this implies that vi,j is dominated.



132

By 180◦ rotational symmetry, since every vertex on or below the main diagonal is dominated,

S is a dominating set, so the rotated pattern above is an RBC.

Theorem 5.13 (Sinko and Slater [56]). If n ≡ 4 (mod 6), then bor (Queen (n)) ≤ 2(n−1)
3

.

Proof. Let n ≡ 4 (mod 6) and represent n as n = 6t + 4. We will show that the rotated

pattern

C2 Q︸ ︷︷ ︸
t repetitions

. . . ,

which contains 2 + 4t = 2 + 4(n− 4)/6 = 2(n−1)
3

cells, is an RBC.

The rightmost rotated queen on row 0 is in column 3t = (n − 4)/2. The 180◦ rotation

of v0,(n−4)/2 is in column (n + 2)/2 = (n − 4)/2 + 3, so the rotated pattern places a queen

in every third column, including columns 0 and n − 1 which contain corner vertices. By

rotation, a queen is also placed in every third row. The same argument used in the proof of

Theorem 5.12 then applies to demonstrate that every cell on the board is dominated by at

least one vertex in the rotated pattern, so the pattern is an RBC.

Theorem 5.13, together with the bound given by Theorem 2.11, imply a solution to the

border queen problem for n ≡ 4 (mod 6).

Corollary 5.14. If n ≡ 4 (mod 6), then bor (Queen (n)) = 2(n− 1)/3.

Theorems 5.15 - 5.19 give constructions for RBCs for all n 6≡ 7 (mod 8). Theorem 5.15

also improves on the upper bound of n− 2 for cases where n ≡ 1 (mod 8).

Theorem 5.15. If n = 8t+ 1 for t ≥ 1, then the rotated pattern

Q︸ ︷︷ ︸
2t−1 repetitions

. . . M2

is an RBC of size 2 + 4(2t− 1) = 8t− 2 = n− 3.



133

Proof. Let S be the vertex set of Queen (n) produced by the rotated pattern above. First,

observe that every even numbered row or column contains a queen (including all of the

border rows and columns, even though corner vertices are not used in the pattern. It is

therefore sufficient to prove that all vi,j, with i and j odd, are dominated. The only parts of

the pattern that are not completely symmetric about rotations are the midpoint cells, which

ensure that the midpoint rows and columns (which are even-numbered) are dominated.

Cells with even row or column numbers are all dominated by the rotated vertices, and by

rotational symmetry, it is sufficient to prove that every vi,j, with both i, j ≡ 1 (mod 3) and

i, j < (n− 1)/2, is dominated by a rotated vertex.

Consider a vertex vi,j meeting the conditions above.

1. If i+ j 6= (n−1)/2, then consider the vertex v0,j+i, which is a back-diagonal neighbour

of vi,j. Column j+ i is even, and by the condition i, j < (n−1)/2, vertex v0,j+i is not a

corner vertex. Since i+ j 6= (n−1)/2, vertex v0,j+i is also not a midpoint vertex (since

the only back-diagonal neighbours of the midpoint v0,(n−1)/2 have i + j 6= (n − 1)/2.

Therefore, either v0,j+1 is a rotated vertex or its horizontal reflection v0,(n−1)−(j+i) is a

rotated vertex. By Corollary 5.9, both cases imply that vi,j is dominated.

2. If i+j 6= (n−1)/2, then as noted above the vertex v0,j+i is a midpoint vertex. However,

consider the forward diagonal neighbour vn−1,j+(n−1)−i = vn−1,(n−1)−(i−j). Since n − 1

and i − j are both even, the vertex vn−1,(n−1)−(i−j) lies in an even column on the top

border row. Since 1 ≤ i, j < (n − 1)/2, column (n − 1) − (i − j) cannot be a border

column or a midpoint column. Therefore, either vn−1,(n−1)−(i−j) is a rotated vertex or

a reflection of a rotated vertex, so Corollary 5.9 implies that vi,j is dominated.

Therefore, S is a dominating set.



134

Theorem 5.16. If n = 8t+ 3 for t ≥ 1, then the rotated pattern

Q︸ ︷︷ ︸
2t repetitions

. . . M1

is an RBC of size 8t+ 1 = n− 2.

Proof. Let S be the vertex set of Queen (n) produced by the rotated pattern above. As with

Theorems 5.15 and 5.17, every even numbered row and column contains a queen. Let vi,j be

a vertex with both i and j odd, i ≤ j and i ≤ (n− 1)− j.

1. If i = j and i + j < n− 1, then the back-diagonal neighbour v0,j+i is in S, since i + j

is even and v0,j+i is not a corner vertex.

2. If i = j = (n− 1)/2, then the back-diagonal neighbour v0,j+i is not in S, but the single

midpoint vertex dominates vi,j.

3. If i 6= j, then the forward-diagonal neighbour v0,j−i is not a corner vertex, and is in S

since j − i is even.

Therefore, S is a dominating set.

Theorem 5.17. If n = 8t+ 5 for t ≥ 1, then the rotated pattern

Q︸ ︷︷ ︸
2t repetitions

. . . M3

is an RBC of size 8t+ 2 = n− 2.

Proof. Let S be the vertex set of Queen (n) produced by the rotated pattern above. As in

the proof of Theorem 5.15, observe that every even numbered row and column contains a

queen. Since three midpoint vertices are present, Lemma 5.6 allows the assumption that

all four midpoint vertices are present, so the four border segments are perfectly symmetric.



135

Consider a vertex vi,j where both i and j are odd, i ≤ j and i ≤ (n− 1)− j. By symmetry,

if every such vertex vi,j is covered, then every rotation of such a vertex is also covered.

1. If i = j, then the back-diagonal neighbour v0,j+i is in S, since i + j is even and v0,j+i

is not a corner vertex.

2. If i 6= j, then the forward-diagonal neighbour v0,j−i is not a corner vertex, and is in S

since j − i is even.

Therefore, S is a dominating set.

Theorem 5.18. If n = 4t for t ≥ 1, then the rotated pattern

C2 Q . . .︸ ︷︷ ︸
t−1 repetitions

is an RBC of size 4(t− 1) + 2 = n− 2.

Proof. Let S be the vertex set of Queen (n) produced by the rotated pattern above. Since

both corner vertices are included, by Lemma 5.4 it is possible to assume that the pattern

is perfectly symmetric under rotation (that is, that all four corners are present). Rows and

columns with indices in {0, 1, . . . , t− 1, 3t, 3t+ 1, . . . , 4t− 1} contain a queen. Let vi,j be a

vertex with i ≤ j, i ≤ (n− 1)− j and i, j ∈ {t, t+ 1, . . . , 3t− 1}.

1. If j − i < t, then the forward-diagonal neighbour v0,j−i of vi,j is in S.

2. If j− i ≥ t, then j+ i = 2i+ (j− i) ≥ 3t, so the back-diagonal neighbour v0,j+i is in S.

Therefore, S is a dominating set.

Theorem 5.19. If n = 4t+ 2 for t ≥ 1, then the rotated pattern

C2 Q . . .︸ ︷︷ ︸
t repetitions



136

is an RBC of size 4t+ 2 = n.

Proof. Let S be the vertex set of Queen (n) produced by the rotated pattern above. Since

both corner vertices are included, by Lemma 5.4 it is possible to assume that the pattern

is perfectly symmetric under rotation (that is, that all four corners are present). Rows and

columns with indices in {0, 1, . . . , t, 3t + 1, 3t + 2, . . . , 4t + 1} contain a queen. Let vi,j be a

vertex with i ≤ j, i ≤ (n− 1)− j and i, j ∈ {t+ 2, t+ 3, . . . , 3t}.

1. If j − i < t+ 1, then the forward-diagonal neighbour v0,j−i of vi,j is in S.

2. If j− i ≥ t+1, then j+ i = 2i+(j− i) ≥ 3(t+1)3t+3, so the back-diagonal neighbour

v0,j+i is in S.

Therefore, S is a dominating set.

The pattern discovered by Sinko and Slater for the construction in Theorems 5.12 and

5.13 is a special case of a general pattern, which is given in Theorems 5.20 and 5.21.

Theorem 5.20. Let p ≥ 0 and q ≥ 1. For all n = 2p(4q − 1) + 1, the rotated pattern

C2

q−1

Q . . . Q

q

. . .

q

. . .

2q−1

Q . . . Q

q

. . .︸ ︷︷ ︸
p−1 repetitions

q

. . .

q−1

Q . . . Q M3

is an RBC of size 4p(2q − 1) + 1.

Proof. The pattern is non-degenerate and uses two corner cells and three midpoint cells.

Lemmas 5.4 and 5.6 imply that the remaining corner vertices and midpoint vertex would

be redundant, which implies that we can assume, for the purpose of the proof, that all four

corner vertices and all four midpoint vertices are present. Therefore, we can assume that

the set S of vertices of Queen (n) corresponding to the rotated pattern above is perfectly

symmetric about all rotations (including the corner and midpoint cells). As a result, it

is sufficient to prove that every vertex on the forward and back diagonal of the board is



137

dominated, and that every vertex under both diagonals (all vertices vi,j in the triangle where

i ≤ j and i ≤ (n− 1)− j) is dominated. The vertices on the diagonals are dominated by the

corner cells in S.

Let vi,j be a cell with i ≤ j and i ≤ (n− 1)− j. Observe that the first n− 1 columns of

row 0 of the pattern consist of repeated instances of the following sequence of 4q − 1 cells

q

Q . . . Q

2q

. . .

q−1

Q . . . Q .

The pattern places a queen in every row and column with an index congruent to −(q −

1),−(q − 2), . . . ,−1, 0, 1, . . . , 1, . . . , q − 1, or q modulo 4q − 1. Therefore, if either i or j is

congruent to any value in {−(q − 1), . . . , q} modulo 4q − 1 then vi,j is dominated by a row

or column neighbour.

Suppose vi,j does not fall into the case above. That is,

i ≡ k (mod 4q − 1) and j ≡ ` (mod 4q − 1)

where k, ` ∈ {q, q + 1, . . . , (4q − 1) − (q + 1), (4q − 1) − q = 3q − 1}. Since vi,j lies in the

triangle below the diagonal and back diagonal of the board, it has both a forward-diagonal

neighbour and back-diagonal neighbour in row 0. Specifically, vi,j is a neighbour of v0,j−i

and v0,j+i. The two cases below establish that either one of these two vertices is in S, or the

horizontal reflection of one of these vertices is in S (which, by Corollary 5.9, is sufficient to

prove that vi,j is dominated).

1. If `−k ∈ {−(q−1), . . . , q−1}, then j− i ≡ −(q−1), . . . , q−2, or q−1 (mod 4q−1),

so the forward-diagonal neighbour v0,j−i is either in S or the reflection of a vertex in

S.

2. Otherwise, |` − k| ≥ q (note that this inequality is not taken modulo 4q − 1). Let



138

a = min(k, `) and b = max(k, `), and note that |` − k| = b − a and a + b = ` + k.

Combining the bounds on k and ` given above with the fact that b − a ≤ q gives

q ≤ a ≤ 3q − 1− (b− a) ≤ 2q − 1 and 2q ≤ q + (b− a) ≤ b ≤ 3q − 1. Therefore,

(4q − 1)− (q − 1) = 3q ≤ a+ b ≤ 5q − 2 = (4q − 1) + (q − 1)

giving a + b ≡ j + i ≡ −(q − 1),−(q − 2), . . . , 0, . . . , q − 2, q − 1 (mod 4q − 1), so the

back-diagonal neighbour v0,j+i is either in S or the reflection of a vertex in S.

Theorem 5.21. Let p ≥ 0 and q ≥ 1. For all n = 2p(4q − 1) + 4q, the rotated pattern

C2

q−1

Q . . . Q

q

. . .

q

. . .

2q−1

Q . . . Q

q

. . .︸ ︷︷ ︸
p repetitions

is an RBC of size (4p+ 2)(2q − 1).

Proof. The pattern is non-degenerate and uses two corner cells. As in the proof of Theorem

5.20, we can assume that all four corner vertices are present, and therefore that the set S

of vertices of Queen (n) corresponding to the rotated pattern above is perfectly symmetric

about all rotations (including the corner cells). Similarly, all vertices on the main forward and

back diagonals of the board are dominated by the corner cells, and therefore, by symmetry,

it is sufficient to prove that every vertex in the triangle vi,j in the triangle where i < j and

i < (n− 1)− j is dominated

Like Theorem 5.20, the first n − 1 columns of row 0 consist of repetitions of the 4q − 1

cells
q

Q . . . Q

2q

. . .

q−1

Q . . . Q .

The proof therefore proceeds equivalently to that of Theorem 5.20.



139

Theorems 5.15 - 5.19, together with the case where p = 1 in Theorem 5.20, give a general

upper bound for the size of an RBC for all n (mod 8). Theorem 5.22 combines these mutually

exclusive cases.

Theorem 5.22. Let n ≥ 8 with n ≡ k (mod 8) where 0 ≤ k ≤ 7. Then the value

MinRBC (n) exists and is bounded above by the value in the table below (according to the

value of k).

k Upper Bound Justification

0 n− 2 Theorem 5.18

1 n− 3 Theorem 5.15

2 n Theorem 5.19

3 n− 2 Theorem 5.16

4 n− 2 Theorem 5.18

5 n− 2 Theorem 5.17

6 n Theorem 5.19

7 n− 2 Theorem 5.20 (p = 1)

�

5.5.1 Searching for Minimum RBCs

Because of the symmetry constraints on rotated vertices, the number of RBCs of Queen (n)

is substantially less than the overall number of border dominating sets, so a computational

search for minimum RBCs is more likely to succeed in a reasonable amount of time than one

for minimum general border sets.

Since Framework 3.1 supports ‘restricted domination’ by allowing the initial candidate

set C to be limited to any set of vertices, it is relatively easy to compute general border

dominating sets using algorithms based on the Framework. However, modifying the initial



140

candidate set is not sufficient to generate RBCs. For example, an RBC can be characterized

by the set of corner vertices, the set of midpoint vertices and the set of rotated vertices in row

0. Restricting the candidate set C for Framework 3.1 to these vertices will not produce an

RBC, since when a rotated vertex in row 0 is added to a dominating set, all of its rotations

must be added with it.

One way around this problem is to modify the algorithm to add all four rotations when-

ever a rotated vertex is used. However, implementing this approach requires a redesign of

the bounding conditions, since all of the algorithms based on Framework 3.1 are designed to

judge the viability of each potential dominating vertex based on the neighbourhood of that

vertex: if adding a particular vertex also mandates adding three other vertices, the bounding

conditions may no longer work.

To generate minimum RBCs, an alternative method was used which allowed standard

restricted domination solvers, like those implementing Framework 3.1, to be used. Theorem

5.23 details the equivalence. The notation NH [v] is used to refer to the neighbourhood of a

vertex v with respect to a particular graph H.

Theorem 5.23. Let n ≥ 4 and, for clarity, define Q = Queen (n).

Define a graph G with V (G) = V (Q) and

E(G) = E(Q) ∪R1 ∪R2 ∪ . . . ∪Rbn/2c−1

where

Rj = {v0,ju : u ∈ NQ[vj,n−1] ∪NQ[vn−1,(n−1)−j] ∪NQ[v(n−1)−j,0]} − {v0,jv0,j}.

Let S = {v0,j : 0 < j < n/2}. If n is even, let T = {v0,0, v0,n−1}. If n is odd, let

T = {v0,0, v0,n−1} ∪ {v0,(n−1)/2, v(n−1)/2,0, vn−1,(n−1)/2}. Finally, let C = S ∪ T .



141

Then any dominating set D of G with D ⊆ C corresponds to an RBC of size

|D ∩ T |+ 4|D ∩ S|

of Q, and any RBC of Q corresponds to a dominating set D ⊆ C of G.

Proof. Consider a dominating set D ⊆ C of G, and let

D′ = (D ∩ T ) ∪ (D ∩ S)

∪ {vj,n−1 : v0,j ∈ D ∩ S}

∪ {vn−1,(n−1)−j : v0,j ∈ D ∩ S}

∪ {v(n−1)−j,0 : v0,j ∈ D ∩ S}.

The vertices in (D ∩ T ) correspond to corner and midpoint vertices of Q, and by the con-

struction of T , the number of corner or midpoint vertices present cannot exceed the limits

of Definition 5.10. All four of the rotations of each vertex v0,j ∈ D ∩ S are added to D′.

Therefore, the set D′ meets the criteria for an RBC if D′ dominates every vertex of Q.

Let vi,j be a vertex of Q such that v /∈ D′ and let u ∈ D be a dominator of vi,j in G (that

is, a vertex such that vi,j ∈ NG[u]). If u ∈ S, then vi,j ∈ NQ[u] since, by the definition of G,

the neighbourhood of non-rotated vertices is the same as Q. If u ∈ T , then since NG[u] is

defined to be the union of NQ[u′] for each rotation u′ of u, either vi,j is dominated by u itself

in Q or vi,j is dominated by some rotation of u in Q. Since all rotations of u are present in

D′, vi,j is dominated by D′ and therefore D′ is a dominating set of Q.

Consider an RBC D′ of Q and let

D = (D′ ∩ T ) ∪ (D′ ∩ {v0,j : 1 < j < n/2}).

To demonstrate the correspondence in the theorem, D will be shown to be a dominating set



142

of G. Let vi,j ∈ V (Q)−D, and let u ∈ D′ be a dominator of vi,j in Q. If u ∈ T , then u ∈ D,

so vi,j is dominated by u in G. Otherwise, u is a rotated vertex. Let u′ be the rotation of u

that lies in row 0. By the definition of D, u′ is in D and, since vi,j /∈ D, vi,j 6= u′. By the

definition of E(G), NQ[u] ⊆ NG[u′], so vi,j ∈ NG[u′], and therefore vi,j is dominated by D in

G.

Dominating sets of the auxiliary graph G in Theorem 5.23 correspond to RBCs of

Queen (n), but there is no assurance that a minimum dominating set of G corresponds

to a minimum RBC. Therefore, to find the minimum size of an RBC, all dominating sets of

the auxiliary graph G were generated (with the candidate set C restricted as given in the

theorem) and, after applying the correspondence in the theorem, the minimum RBC was

selected.

5.5.2 Summary of Border Queen Results

Table 5.5 summarizes all known results on the border domination problem for 1 ≤ n ≤ 100.

For n ≤ 29, the value of bor (Queen (n)) has been found computationally (all values of

bor (Queen (n)) for n ≥ 14 are new results from this research). Table 5.5 does not contain

results for bor (Queen (n)) for n ≥ 29 since the exact value of bor (Queen (n)) is not yet

known for those values of n. The table also includes the upper bounds on the size of an RBC

produced by Theorems 5.20, 5.21 and 5.22. In cases where the size of a minimum RBC, or

one of the upper bounds, matches the border domination number, the corresponding table

entry is in red. In cases where the value of an upper bound matches the minimum size of an

RBC, the corresponding table entry is in bold.



143

Table 5.5: Summary of Border Domination Parameters

n
Upper Bounds

n
Upper Bounds

bor Min. Thm. Thm. Thm. Min. Thm. Thm. Thm.
RBC 5.20 5.21 5.22 RBC 5.20 5.21 5.22

1 1 1 -2 51 49 49
2 1 1 2 52 34 34 50
3 2 2 1 53 51 51
4 3 3 2 54 54 54
5 3 3 3 55 37 37 53
6 4 4 6 56 50 50 54
7 5 5 5 5 57 49 49 54
8 6 6 6 58 38 38 58
9 6 6 6 59 57 57
10 6 6 6 10 60 58 58
11 9 9 9 61 41 41 59
12 10 10 10 62 62 62
13 9 9 9 11 63 61 61 61
14 12 12 14 64 42 42 62
15 13 13 13 13 65 62 62
16 10 10 10 14 66 66 66
17 14 14 14 67 45 45 65
18 16 18 18 68 66 66
19 13 13 13 17 69 67 67
20 18 18 18 70 46 46 70
21 19 19 19 71 61 61 69
22 14 14 14 22 72 70 70
23 21 21 21 21 73 49 49 70
24 22 22 22 74 74 74
25 17 17 17 22 75 73 73
26 24 26 26 76 50 50 74
27 25 25 25 77 73 73 75
28 18 18 18 26 78 66 66 78
29 25 25 25 27 79 53 53 77
30 30 30 80 78 78
31 21 21 29 81 78 78
32 30 30 82 54 54 82
33 30 30 83 81 81
34 22 22 34 84 82 82
35 33 33 85 57 57 83
36 30 30 34 86 86 86
37 25 25 35 87 85 85 85
38 38 38 88 58 58 86
39 37 37 37 89 81 81 86
40 26 26 38 90 90 90
41 38 38 91 61 61 89
42 42 42 92 78 78 90
43 29 29 41 93 89 89 91
44 42 42 94 62 62 94
45 41 41 43 95 93 93 93
46 30 30 46 96 90 90 94
47 45 45 45 97 65 65 94
48 46 46 98 98 98
49 33 33 46 99 85 85 97
50 42 42 50 100 66 66 98



144

The data in Table 5.5 shows that MinRBC (n) is equal to bor (Queen (n)) for all but

two of the known cases. Additionally, for all of the computed cases in the table except

n = 1, 2, 3, 4, 5, 6, 14, MinRBC (n) is exactly equal to the best upper bound computed by

Theorems 5.20, 5.21 and 5.22. In particular, in every case where Theorems 5.20 or 5.21

apply, the size of the RBC produced by the construction in those theorems for the minimum

value of q is equal to the size of a minimum RBC and, for values of n where bor (Queen (n))

is known, equal to bor (Queen (n)). In general, the data in Table 5.5 seems to support the

claim that a characterization of RBCs may lead to a characterization of bor (Queen (n)), and

additionally that the three theorems given earlier in this chapter come close to achieving such

a characterization of MinRBC (n). The two aspects of the data which may contradict such a

claim are the cases where MinRBC (n) does not match bor (Queen (n)), and the cases where

MinRBC (n) is not equal to one of the three bounds.

For n = 1, 2, 3, 4, 5, 6, 14, the size of a minimum RBC does not match the size of an RBC

produced by any of Theorems 5.20, 5.21 and 5.22. For n ≤ 6, this is due to the theorems

not being applicable. For some of these values, all minimum RBCs are degenerate (and

therefore, could not match any of the canonical RBCs produced by the bounding theorems).

Figure 5.8 gives minimum RBCs for n = 1 through 6, and Figure 5.9 gives a minimum RBC

for n = 14.

Of the minimum RBCs in Theorem 5.8, only the case n = 6 is non-degenerate and

therefore admits a canonical form. Some of the other cases, in addition to being degenerate,

also violate other aspects of Definition 5.10. For example, the minimum RBC for n = 4

contains three corner vertices.

For n ≥ 8 (the minimum value of n for which all three bounding theorems can produce a

bound), the only value of n for which one of the three bounds does not match MinRBC (n)

is n = 14. The bound produced by Theorem 5.22, via Theorem 5.19, is 14, while the

minimum RBC has size 12. In general, since the bound produced by Theorem 5.19 is n,



145

(a) n = 1

(b) n = 2

(c) n = 3

(d) n = 4

(e) n = 5

(f) n = 6

Figure 5.8: Examples of minimum RBCs for n ∈ {1, 2, 3, 4, 5, 6}.



146

Figure 5.9: A minimum RBC of size 12 of Queen (14).



147

it will never match bor (Queen (n)) since Theorem 2.8 gives a construction for a non-RBC

border dominating set of size n − 2 for all n ≥ 4. The two cases in Table 5.5 for which

MinRBC (n) does not match bor (Queen (n)) occur at n = 18 and n = 26, both of which

correspond to cases where Theorem 5.19 produces the best upper bound. However, in those

cases, MinRBC (n) = n.

The remaining cases where MinRBC (n) = n occur at n = 30, 38, 42, 54, 62, 66, 74, 86, 90.

All are cases where no bounds apply except Theorem 5.19, and it is clear that MinRBC (n) 6=

bor (Queen (n)) for all such cases. Since Theorem 5.19 applies for n = 4t+ 2 for t ≥ 1, all of

the values in Table 5.5 for which MinRBC (n) have n ≡ 2 (mod 4), but many other values

which are congruent to 2 modulo 4 are covered by Theorem 5.21. In general, Theorem 5.21

applies when n = 2p(4q − 1) + 4q for some p ≥ 0 and q ≥ 1. This expression for n can be

rewritten as n = (2p+ 1)(4q− 1) + 1, so n− 1 is divisible by 4q− 1, which is congruent to 3

(mod 4). Theorem 5.21 applies in all cases where 4q−1 divides n for some q. Since n−1 ≡ 1

(mod 4), all of its divisors must be congruent to either 1 or 3 (mod 4), and Conjecture 5.24

proposes a characterization of the cases where Theorem 5.21 cannot apply and proposes that

MinRBC (n) = n (due to Theorem 5.19) in those cases.

Conjecture 5.24. Let n ≥ 15. If every odd prime divisor p of n − 1 has p ≡ 1 (mod 4),

then MinRBC (n) = n.

Note that if all prime divisors p of n− 1 have p ≡ 1 (mod 4), then since the set

S = {k : k ≡ 1 (mod 4)}

is closed under multiplication, every divisor of n− 1 is also congruent to 1 (mod 4).

Conjecture 5.24 sets a lower bound of n ≥ 15, since the conjecture would otherwise apply

to the values n = 6 and n = 14. Although the n = 6 case can be relegated by assuming that

(as with many of the theorems in this chapter) small values of n exhibit peculiar behavior,



148

the case n = 14 remains an outlier, both as a case where the conjecture does not apply and

as the single case where MinRBC (n) is not determined by one of the bounding theorems. In

the data for n ≥ 15, there is no evidence that the n = 14 case is an example of a recurring

pattern, although such a pattern may appear at larger values of n than the ones covered by

Table 5.5.

We conclude this section with a set of additional conjectures based on the data in Table

5.5. Conjecture 5.25 is the most cautious of the set, and proposes that Theorems 5.20,

5.21 can produce a minimum RBC for every value n that meet the initial conditions of

those theorems. Except for the cases covered by Conjecture 5.24, MinRBC (n) matches

bor (Queen (n)) for all values of n for which bor (Queen (n)) is known and MinRBC (n) is

equal to the minimum of the three bounds in Theorems 5.20, 5.21 and 5.22. Conjectures

5.26, 5.27, 5.28 present possible resolutions to the open questions of the minimum size of

RBCs and the minimum size of border dominating sets. Conjecture 5.27 is a weak form of

Conjecture 5.28.

Conjecture 5.25. Let n ≥ 1.

1. If there exists a minimum q such that n = 2p(4q − 1) + 1 for some p, then the construction

in Theorem 5.20 yields a minimum RBC and MinRBC (n) = 4p(2q − 1) + 1.

2. If there exists a minimum q such that n = n = 2p(4q−1)+4q for some p, then the construction

in Theorem 5.21 yields a minimum RBC and MinRBC (n) = (4p+ 2)(2q − 1).

Note that the two cases above are mutually exclusive.

Conjecture 5.26. For all n ≥ 15, an RBC with size MinRBC (n) can be constructed using one

of Theorems 5.20, 5.21 and 5.22.

Conjecture 5.27. For all n ≥ 1, bor (Queen (n)) ≥ MinRBC (n)− 2.

Conjecture 5.28. Let n ≥ 1. If n ≥ 15 and every prime divisor p of n − 1 has p ≡ 1 (mod 4),

then bor (Queen (n)) = n− 2. Otherwise, bor (Queen (n)) = MinRBC (n).



149

Chapter 6

Unidom

The culmination of the research in Chapters 3 and 4 was the creation of a unified domina-

tion solver for arbitrary graphs, called unidom. The unidom program is designed to be fast,

self-contained (with no reliance on outside libraries, besides the C++ standard library) and

modular. The unidom program contains implementations of all of the dominating set algo-

rithms described in this thesis. It also supports various input formats (and procedural graph

generators) and preprocessing stages, and allows either optimization (finding a minimum

dominating set) or exhaustive generation of dominating sets of a particular size.

This chapter contains a high level summary of unidom’s architecture and features. It

is not intended to serve as the documentation for the software, only as a presentation of a

research artifact.

6.1 The unidom Architecture

The unidom program is designed to serve as a research tool for solving instances of domination

problems. For some applications, the ‘stock’ features of unidom, such as the algorithms

described in this thesis, should suffice to find a solution. In other cases, it may be necessary

to extend unidom’s functionality with new code to adapt it to a particular problem. To



150

accommodate both possibilities, unidom has been designed to be modular and allow easy

extension at the source code level, but also to have a flexible interface to allow different

features to be selected at the command line instead of recompiling or modifying the code.

At a high level, the program operates on a ‘pipeline’ model, where an instance of a domination

problem is passed through several stages, which may include manipulations like renumbering

of vertices, graph transformations or the application of reduction rules. The relative isolation

of each stage in the unidom pipeline also allows for easy modification by future contributors.

Preprocessing Filters

SolverFilter 1 Filter k. . .
Input
Source · · · Output

Proxy Output

(G′, Fin, Fout, π
−1, S)

(G,Fin, Fout) (G′, Fin, Fout, π
−1)

Figure 6.1: Diagram of the ‘pipeline’ used by unidom computations.

Figure 6.1 illustrates the high-level architecture of unidom. Sections 6.2 - 6.5 describe

each stage of the pipeline. It is not always necessary to use all of the stages of the pipeline.

For example, to use unidom to find a minimum dominating set of a graph stored in an input

file ‘graph.txt’ using the ‘MDD minCD’ solver, the command line

$ ./unidom -S MDD_minCD < graph.txt

would suffice. On the other hand, command line options are available to configure each

aspect of the pipeline, as shown in the diagram below, which gives an illustrated view of

the command line to create a pipeline for generating a queen graph of order 8, renumbering

the vertices by a BFS traversal, finding minimum dominating sets with the ‘fixed order’

solver, using an initial upper bound of 7, and outputting the best dominating set found.

$ ./unidom -I queen -n 8︸ ︷︷ ︸
Input Source

-F renumber bfs︸ ︷︷ ︸
Filter

-S fixed order -u 7︸ ︷︷ ︸
Solver

-O output best︸ ︷︷ ︸
Output Proxy



151

The ‘-I’, ‘-F’, ‘-S’ and ‘-O’ options are used to specify the input source (described in

Section 6.2), filter(s) (described in Section 6.3), solver (described in Section 6.4) and output

proxy (described in Section 6.5), respectively. Multiple filters can be specified with multiple

‘-F’ options. The first argument after a ‘-I’, ‘-F’, ‘-S’ or ‘-O’ flag must be the name of

the component (input source/filter/solver/output proxy) to add to the pipeline. After the

component name, component-specific arguments can be specified (as with the ‘-n 8’ and

‘-u 7’ in the example above). By convention, argument flags for components are lowercase.

The arguments for a particular component must immediately follow that component’s ‘-I’,

‘-F’, ‘-S’ or ‘-O’ flag.

6.2 Input Source

An input source in unidom produces a triple (G,Fin, Fout), where G is a graph (represented

internally with an adjacency list) and Fin, Fout ⊆ V (G) are sets of vertices which restrict

the eventual dominating sets generated for G. All vertices in Fin must be added to any

dominating set produced by the solver and any vertices in Fout must be excluded.

The default input source reads graphs from standard input in the text-based adjacency

list format detailed below.

<number of vertices>

<degree of vertex 0> <neighbour 0 of vertex 0> <neighbour 1 of vertex 0> ...

<degree of vertex 1> <neighbour 0 of vertex 1> <neighbour 1 of vertex 1> ...

...

<degree of vertex n-1> <neighbour 0 of vertex n-1> <neighbour 1 of vertex n-1> ...

Figure 6.2 shows a graph (specifically, TG (3)) with numbered vertices and its represen-

tation in the format given above.

The text-based input format should be sufficient for most uses, but the interface for input

sources allows procedural generators to be used as well. In cases where a parameterized



152

v0

v3v5

v4

v2

v1

(a) Diagram

6

4 1 2 3 4

2 0 3

2 0 4

4 1 0 4 5

4 0 2 3 5

2 3 4

(b) Adjacency list

Figure 6.2: Example of the adjacency list representation of TG (3).

family of graphs is being studied, it may be easier to add a generator directly to unidom as

an input source than to write a separate generator and feed the results into unidom. The

sets Fin and Fout allow restricted domination problems (such as the border queen problem)

to be encoded as unidom inputs.

The input sources implemented for this research are detailed below, with relevant pa-

rameters. An input source is selected with the -I parameter.



153

basic input Read adjacency lists from standard input.

border queen Generate Queen (n) (where n is specified by the -n parameter), with all

interior vertices added to Fout.

code graph Generate the covering code graph Coder (n, q), with the parameters n and

r specified via -n and -r (respectively) and the parameter q specified by

-base.

hexrook Generate HR (n) (where n is specified by the -n parameter).

kneser Generate Kneser (n, k), with n and k specified by the -n and -k parame-

ters, respectively.

queen Generate Queen (n) (where n is specified by the -n parameter).

TG Generate the triangular grid graph TG (n) (where n is specified by the -n

parameter).

6.3 Preprocessing Filters

After the input graph is generated, any number of preprocessing filters can be used to ap-

ply various transformations to the (G,Fin, Fout) triple before the solver is invoked. Filters

may modify the input triple in any way, although filters for the general domination problem

should normally be constrained to operations such that the dominating sets which are even-

tually output will be in one-to-one correspondence with those of the original input graph

G. As Chapters 3 and 4 showed, renumbering of vertices is often useful during a domi-

nating set computation, and several filters have been added to facilitate this. To ensure

that the generated dominating sets can be mapped back onto the original input graph, the

output of the preprocessing stage is a tuple (G′, Fin, Fout, π
−1), where π−1 is a permutation

of {1, 2, . . . , |V (G)|} such that, for a vertex vi ∈ V (G′) π−1(i) gives the index of vertex vi in

the original graph G (prior to the preprocessing stage). The permutation π−1 is then car-

ried through each remaining stage of the pipeline so that it can be used to generate output



154

consistent with the original input graph.

Filters are specified with the -F parameter, and are applied in the same order they appear

on the command line. The standard set of available filters is detailed below.



155

force in Given a list of vertex indices on the command line after the

‘-F force_in’ parameter (for example ‘-F force_in 0 2 6 10’),

add the specified vertices to the set Fin. This will result in the pro-

duced dominating sets being required to contain all of the specified

vertices.

force out Given a list of vertex indices on the command line after the

‘-F force_out’ parameter (for example ‘-F force_out 0 2 6 10’),

add the specified vertices to the set Fout. This will result in the pro-

duced dominating sets being required to exclude all of the specified

vertices (or, if no such sets exist, no dominating sets being generated

at all).

renumber bfs Renumber the vertices of the graph to correspond to the order in

which vertices are visited by a breadth-first search traversal starting

at vertex 0. A different choice of root can be specified by the -root

parameter.

renumber maxdeg Renumber the vertices of the graph in ascending order by degree (so

vertex 0 will have maximum degree and vertex n−1 will have minimum

degree).

renumber mindeg Renumber the vertices of the graph in ascending order by degree (so

vertex 0 will have minimum degree and vertex n−1 will have maximum

degree).

renumber random Renumber the n vertices of the graph by applying a random per-

mutation of {0, 1, . . . , n − 1}. The permutation is generated with a

Knuth shuffle algorithm [46], which selects permutations uniformly at

random under the assumption that the underlying pseudorandom gen-

erator produces uniformly distributed random numbers. The underly-

ing pseudorandom generator is the Mersenne Twister implementation

provided by the C++ standard library.



156

6.4 Solver

The solver is specified with the -S parameter and takes the (G′, Fin, Fout, π
−1) tuple from the

preprocessing stage as its input. Solvers generate one or more dominating sets S ⊆ V (G′) and

provide each of them to the output stage as part of a tuple (G′, Fin, Fout, π
−1, S). There is no

requirement that solvers generate only minimum (or even minimal) dominating sets. Some

of the provided solvers are designed to exhaustively generate dominating sets with certain

properties and others are designed to output only those sets which may be of minimum

size (usually by outputting a set only when it is smaller than any previously generated set).

Solvers are generally required to respect the sets Fin and Fout which may restrict the set

of possible solutions. If a solver is incompatible with restricted domination, it is expected

to generate an error message and terminate the program if Fin or Fout is non-empty, rather

than simply ignoring the two sets and proceeding.

For problems in which dominating sets with very particular properties are needed (such as

RBCs for the border queen problem), it is often easier (if potentially slower) to use a general

exhaustive solver coupled with a customized output proxy which ignores all solutions which

do not meet the criteria. A list of all solvers is detailed below; since it is not practical (due

to code size limitations) to include all of the variants covered by the experimental data in

Chapter 4, only a handful of high quality solvers have been included. If no solver is specified,

the fixed order variant is used. All of the solvers based on Framework 3.1 have a common

set of configuration options and are provided in two versions: one to solve the optimization

problem of finding a minimum dominating set and one to exhaustively generate dominating

sets. The exhaustive generation variant of each solver has the suffix ‘ all’. For exhaustive

generation, it may be useful to constrain the minimum and maximum size of the generated

sets; the various configuration options for the solvers are described later in this section.



157

DD

DD all

The ‘default’ variant of Algorithm 3.5. Based on the experimental

data in Chapter 4, this is an alias of the DD minCD asc solver.

DD minCD asc

DD minCD asc all

An implementation of Algorithm 3.5 using minimum CD for ver-

tex selection, ascending neighbour ordering and with neither of

the force stop or bound rechecking optimizations enabled.

DD minCD desc

DD minCD desc all

An implementation of Algorithm 3.5 using minimum CD for ver-

tex selection, descending neighbour ordering and with neither of

the force stop or bound rechecking optimizations enabled.

MDD

MDD all

The ‘default’ variant of Algorithm 3.7. Based on the experimental

data in Chapter 4, this is an alias of the MDD minCD solver.

MDD minCD asc

MDD minCD asc all

An implementation of Algorithm 3.7 using minimum CD for ver-

tex selection, ascending neighbour ordering and with the force

stop optimization disabled but bound rechecking enabled.

MDD minCD desc

MDD minCD desc all

An implementation of Algorithm 3.7 using minimum CD for ver-

tex selection, descending neighbour ordering and with the force

stop optimization disabled but bound rechecking enabled.

MDD minMDD desc

MDD minMDD desc all

An implementation of Algorithm 3.7 using minimum MDD for

vertex selection, descending neighbour ordering and with the force

stop optimization disabled but bound rechecking enabled.

fixed order

fixed order all

An implementation of Algorithm 3.2. This solver should be used

on very small graphs, due to its low overhead. It should normally

be combined with a renumbering filter (such as renumber bfs)

to improve performance (as demonstrated by the experiments in

Chapter 4).

All of the solvers above share a common set of configuration options (which should be

specified on the command line after the ‘-S <solver>’ parameters), which are summarized



158

below.

-u <upper bound> Restrict the computation to dominating sets of size at most <upper

bound>. This is equivalent to setting the desired size parameter

in Framework 3.1.

-l <lower bound> Restrict the computation to dominating sets of size at least <lower

bound>. For optimizing solvers, this setting will cause the solver

to immediately terminate after finding a set of size <lower bound>.

For solvers which exhaustively generate dominating sets, this setting

(possibly combined with the -u option) can be used to limit the

range of sizes of the generated sets.

-res

-mod

-resmod depth

Set the residue, modulus and split depth for the res/mod approach

for multiprocessor computation (see Section 5.2 for information).

6.5 Output Proxy

The output phase of the pipeline is interleaved with the solver’s computation: whenever

the solver produces a dominating set, the output phase is invoked. Output is managed

by an ‘output proxy’ which determines how (and if) the dominating set should be output.

The output phase can also contain verification (to ensure that the dominating set is valid,

or that the restricted domination constraints have been obeyed). Formally, the output

proxy receives a tuple (G′, Fin, Fout, π
−1, S) from the solver, where S is a dominating set

and the remaining items are as defined in previous sections. In the unidom implementations

solvers based on Framework 3.1, the output phase is invoked every time a dominating set



159

smaller than the current best is found (line 4 of Framework 3.1) in optimization mode,

or, in exhaustive generation mode, every time a dominating set has been found (line 6

of Framework 3.1). The output proxy may output every certificate it receives, wait until

the end of the computation and output the best overall certificate, or output some subset

of certificates which meet certain conditions. This allows unusual variants of domination

problems to be easily implemented in unidom (at the expense of running time) by using an

exhaustive generation solver to generate all dominating sets of a particular size and defining

a custom output proxy to filter the sets according to the problem requirements.

The set S in the (G′, Fin, Fout, π
−1, S)-tuple provided to the output proxy is a subset of

the vertices of G′, which may not correspond directly to the original input graph. To output

a certificate in terms of the original input graph, the permutation π−1 can be used to map

the contents of S back to the vertices of the original input graph G. All of the provided

output proxies perform this mapping.

The provided output proxies are detailed below. If no output proxy is explicitly specified,

the ‘output all’ output proxy is used.



160

output all Print every dominating set received from the solver to standard output

(after applying the renumbering permutation π−1), followed by ‘-1’ printed

on a line by itself after the computation ends. Each dominating set is

printed on its own line and consists of the size of the set followed by a

listing of the vertices in the set.

output best At the end of the computation, print the minimum-size dominating set

received over the course of the computation. If multiple dominating sets

were received with the minimum size, the first one is output. Sets are

printed in the same format as the ‘output all’ solver, including the ‘-1’

printed after the computation ends. If the ‘-graph’ parameter is used,

a representation of the graph (in the adjacency list format described in

Section 6.2) is printed before the dominating set (this feature may be useful

for generating certificates for solved cases of the domination problem on

particular graphs). If the ‘-gamma’ parameter is used, only the size of the

minimum dominating set is printed, not the set itself.

queen board Only usable in conjunction with the ‘queen’ or ‘border queen’ input

sources. At the end of the computation, outputs the minimum dominating

set of a queen graph with a chessboard-style representation, with ‘Q’ indi-

cating the placement of queens and ‘ ’ indicating empty cells. The ‘-all’

parameter can be used to enable output of all sets received, instead of just

the minimum size set.



161

Chapter 7

Conclusions and Future Research

The main contributions made by this thesis were the backtracking framework and derived

algorithms (Chapter 3), the newly solved open cases of the queen domination, independent

domination and border domination problems (summarized in the introduction to Chapter

5), the definition and theoretical results for rotated border constructions (Section 5.5) and

the development of the unidom research tool for solving domination problems (Chapter 6).

As observed in Sections 1.2 and 1.4, there is a paucity of research regarding general purpose

dominating set solvers, other than wrappers around solvers for other hard problems (such

as integer programming). The solvers created for this thesis have already been successfully

used to solve previously open problems, but, as the data in Chapter 4 shows, the newly

developed algorithms are not universally better than existing solvers. The author hopes

that the research in this thesis can be used as a foundation for the development of higher

quality solvers in the future, and that the experimental data collected for this thesis can be

of use to researchers evaluating prospective algorithmic approaches. The unidom program is

intended to be the first step toward a dedicated suite of domination solvers, in the tradition

of SAT solvers or integer programming solvers.

One of the immediate avenues for future algorithmic research is the use of symmetry



162

in the domination computation. Even within this thesis, many of the studied graphs had

large symmetry groups, and a practical method to eliminate isomorphic solutions from the

computation would likely result in a significant speedup. Simple heuristic methods to reduce

isomorphism are often easy to implement (for example, by constraining the first few vertices

selected for a dominating set based on known properties of particular graphs), but may

be graph- or family-dependent. General isomorphism reduction requires knowledge of the

automorphism group of the graph, as well as a practical method for using the group elements

such that the overhead incurred does not outweigh the speedup of isomorphism removal.

Practical algorithms to compute automorphism groups (as a set of generators) are already

widely used (notably, the nauty program [49]). Previous research by Myrvold and Fowler

[50] and Bird and Myrvold [5] has presented practical approaches to isomorphism elimination

in backtracking searches.

The experiments of Chapter 4 showed that the SageMath solver had significantly better

performance than any of the new algorithms on certain classes of graphs, namely the triangle

grid graphs and the cartesian products of cycles. Further study is needed to identify the

cause of the performance difference on these classes. Given that the triangle grid graphs

are subgraphs of the hex rook graphs (on which the new algorithms handily outperformed

SageMath), a question for future research would be whether the difference is due to the

total number of edges (or some related metric, such as average degree). One possible cause

is that, in triangle grid graphs, the closed neighbourhoods of some vertices are completely

contained in the closed neighbourhoods of other vertices. In an integer/linear programming

solver, such cases create linear dependencies between the constraints of the program, which

may allow the solver to eliminate some constraints.

The smallest open case of the queen domination and independent domination problems

is now n = 26. This case should be within the reach of the algorithm used for the open

cases in this thesis with currently available research computing clusters (which for funding



163

reasons were not leveraged for this research). Such clusters typically have thousands of

processors, and all of the infrastructure for massive parallelization is already available in the

implementations presented by this research (including the unidom program). One avenue

that was not explored in this research was the behavior of the domination number of non-

square queen graphs (for example, a 10×20 chessboard), which might lead to a classification

of generalized queen graphs. In addition to queen graphs, several other families of graphs

might benefit from the new algorithms, including (rectangular) grid graphs (for which the

domination number is known, but the structure of minimum dominating sets is still studied)

and Cartesian products of graphs (as part of the search for a counterexample to Vizing’s

conjecture).

As far as the queen problem is concerned, the overall goal of using computers to solve

open cases is to provide more data for theoretical research with an eye toward developing

conjectures and, ultimately, finding a theoretical solution. This symbiosis between compu-

tation and theory is more evident in the border queen results presented in Chapter 5.5.

Previous research was conducted using observations from a small number of known values

of bor (Queen (n)). Using the newly computed minimum border dominating sets for n ≤ 29,

the theory of rotated border constructions was developed, and Theorems 5.20, 5.21 and 5.22

were proven. The theoretical results on RBCs were used to compute the minimum size of an

RBC for n ≤ 100 using the transformation described in Section 5.5.1. These computational

results, in turn, provided evidence that the constructions in Theorems 5.20, 5.21 and 5.22

yield minimum RBCs for all n ≤ 100, and additionally, that the minimum size of an RBC

matches the border domination number in almost all known cases. The culmination of this

progression is the set of conjectures stated in Section 5.5.2 on the potential resolutions to the

border domination problem. Besides bringing together the theoretical material in Section

5.5, the conjectures at the end of Chapter 5 also tie together all of the other facets of this

thesis, since without the algorithms and experiments of previous chapters, the data which



164

led to the conjectures would not have been available. For future research, the most salient

open question posed by this thesis is Conjecture 5.28: For values of n ≥ 15 where at least

one odd prime divisor of n−1 is not congruent to 1 (mod 4), is it the case that MinRBC (n)

is always equal to bor (Queen (n))?



165

Bibliography

[1] SageMath website (http://www.sagemath.org). Retrieved June 13, 2016.

[2] Jochen Alber, Hongbing Fan, Michael R. Fellows, Henning Fernau, Rolf Niedermeier,

Fran Rosamond, and Ulrike Stege. Refined Search Tree Technique for Dominating Set

on Planar Graphs, pages 111–123. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[3] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cam-

bridge University Press, Cambridge, 2009.

[4] Jordan Bell and Brett Stevens. A survey of known results and research areas for n-

queens. Discrete Mathematics, 309(1):1 – 31, 2009.

[5] William Bird and Wendy Myrvold. Generation of colourings and distinguishing colour-

ings of graphs. In Frank Dehne, Jörg-Rüdiger Sack, and Ulrike Stege, editors, Algorithms

and Data Structures, volume 9214 of Lecture Notes in Computer Science, pages 79–90.

Springer International Publishing, 2015.

[6] Béla Bollobás and Ernest J. Cockayne. The irredundance number and maximum degree

of a graph. Discrete Mathematics, 49(2):197–199, 1984.

[7] Bos̆tjan Bres̆ar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning,

Sandi Klavz̆ar, and Douglas F. Rall. Vizing’s conjecture: a survey and recent results.

Journal of Graph Theory, 69(1):46–76, 2012.



166

[8] David Brink. The inverse football pool problem. Journal of Integer Sequences, 14(8):Ar-

ticle 11.8.8, 9, 2011.

[9] P. A. Burchett. On the border queens problem and k-tuple domination on the rooks

graph. Congressus Numerantium, 209:179–187, 2011.

[10] A. P. Burger, E. J. Cockayne, and C. M. Mynhardt. Domination and irredundance in

the Queens’ graph. Discrete Mathematics, 163(13):47 – 66, 1997.

[11] A. P. Burger and C. M. Mynhardt. An improved upper bound for Queens domination

numbers. Discrete Mathematics, 266(1-3):119–131, 2003. The 18th British Combinato-

rial Conference (Brighton, 2001).

[12] Alewyn Petrus Burger. The queen’s domination problem. PhD thesis, University of

South Africa, 1998.

[13] M. Chleb́ık and J. Chlebková. Approximation hardness of dominating set problems in

bounded degree graphs. Information and Computation, 206(11):1264 – 1275, 2008.

[14] E. J. Cockayne. Chessboard domination problems. Discrete Mathematics, 86(1):13 –

20, 1990.

[15] E. J. Cockayne, O. Favaron, C. Payan, and A. G. Thomason. Contributions to the

theory of domination, independence and irredundance in graphs. Discrete Mathematics,

33(3):249 – 258, 1981.

[16] E. J. Cockayne, S. T. Hedetniemi, and D. J. Miller. Properties of hereditary hypergraphs

and middle graphs. Canadian Mathematical Bulletin, 21(4):461–468, 1978.

[17] E. J. Cockayne and C. M. Mynhardt. Properties of Queens graphs and the irredundance

number of Q7. Australasian Journal of Combinatorics, 23:285–300, 2001.



167

[18] Gérard Cohen, Iiro Honkala, Simon Litsyn, and Antoine Lobstein. Covering codes,

volume 54 of North-Holland Mathematical Library. North-Holland Publishing Co., Am-

sterdam, 1997.

[19] Peter Damaschke. Irredundance number versus domination number. Discrete Mathe-

matics, 89(1):101 – 104, 1991.

[20] Joe DeMaio and Hong Lien Tran. Domination and independence on a triangular hon-

eycomb chessboard. The College Mathematics Journal, 44(4):307–314, 2013.

[21] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.

Texts in Computer Science. Springer, London, 2013.

[22] Rodney G. Downey, Michael R. Fellows, Catherine McCartin, and Frances Rosamond.

Parameterized approximation of dominating set problems. Information Processing Let-

ters, 109(1):68 – 70, 2008.

[23] J. Ellis, H. Fan, and M. Fellows. The dominating set problem is fixed parameter tractable

for graphs of bounded genus. Journal of Algorithms, 52(2):152 – 168, 2004.

[24] Odile Favaron, Gerd H. Fricke, Dan Pritikin, and Jol Puech. Irredundance and domi-

nation in Kings graphs. Discrete Mathematics, 262(1):131 – 147, 2003.

[25] Henning Fernau. Minimum dominating set of queens: A trivial programming exercise?

Discrete Applied Mathematics, 158(4):308 – 318, 2010. 6th Cologne/Twente Workshop

on Graphs and Combinatorial Optimization (CTW 2007).

[26] Dmitry Finozhenok and William D. Weakley. An improved lower bound for domination

numbers of the Queen’s graph. The Australasian Journal of Combinatorics, 37:295–300,

2007.



168

[27] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. Measure and conquer:

domination–A case study. In International Colloquium on Automata, Languages, and

Programming, pages 191–203. Springer, 2005.

[28] Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs: Branch-

width and exponential speed-up. SIAM Journal on Computing, 36(2):281–309, 2006.

[29] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[30] Chris Godsil and Gordon Royle. Algebraic graph theory, volume 207 of Graduate Texts

in Mathematics. Springer-Verlag, New York, 2001.

[31] Igor Gorodezky. Dominating sets in Kneser graphs. Master’s thesis, University of

Waterloo, 2007.

[32] Fabrizio Grandoni. A note on the complexity of minimum dominating set. Journal of

Discrete Algorithms, 4(2):209 – 214, 2006.

[33] S. Guha and S. Khuller. Approximation algorithms for connected dominating sets.

Algorithmica, 20(4):374–387, 1998.

[34] Magnús M. Halldórsson. Approximating the minimum maximal independence number.

Information Processing Letters, 46(4):169 – 172, 1993.

[35] S. T. Hedetniemi and R. C. Laskar. Bibliography on domination in graphs and some

basic definitions of domination parameters. In S.T. Hedetniemi and R. C. Laskar,

editors, Topics on Domination, volume 48 of Annals of Discrete Mathematics, pages

257 – 277. Elsevier, 1991.



169

[36] Juraj Hromkovič. Algorithmics for Hard Problems: Introduction to Combinatorial Opti-

mization, Randomization, Approximation, and Heuristics. Springer-Verlag, Berlin/Hei-

delberg, 2013.

[37] Robert W. Irving. On approximating the minimum independent dominating set. Infor-

mation Processing Letters, 37(4):197 – 200, 1991.

[38] Yoichi Iwata. A faster algorithm for dominating set analyzed by the potential method.

In International Symposium on Parameterized and Exact Computation, pages 41–54.

Springer, 2011.

[39] Wm. Woolsey Johnson and William E. Story. Notes on the “15” puzzle. American

Journal of Mathematics, 2(4):397–404, 1879.

[40] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer

US, Boston, MA, 1972.

[41] Petteri Kaski and Patric R. J. Österg̊ard. Classification algorithms for codes and designs,

volume 15 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin,

2006.

[42] Matthew D. Kearse and Peter B. Gibbons. Computational methods and new results for

chessboard problems. The Australasian Journal of Combinatorics, 23:253–284, 2001.

[43] Matthew D. Kearse and Peter B. Gibbons. A new lower bound on upper irredundance

in the Queens’ graph. Discrete Mathematics, 256(12):225 – 242, 2002.

[44] Gerzson Kéri. Tables for bounds on covering codes. http://www.sztaki.hu/~keri/

codes/. Accessed on May 21, 2017.

[45] Sandi Klavz̆ar and Norbert Seifter. Dominating cartesian products of cycles. Discrete

Applied Mathematics, 59(2):129 – 136, 1995.

http://www.sztaki.hu/~keri/codes/
http://www.sztaki.hu/~keri/codes/


170

[46] Donald E. Knuth. The Art of Computer Programming, Volume 4A. Addison-Wesley,

Reading, Massachusetts, 2011.

[47] Emil Kolev and Tsonka Baicheva. About the inverse football pool problem for 9 games.

In Seventh International Workshop on Optimal Codes and Related Topics, pages 125–

133, 2013.

[48] Jeff Linderoth, François Margot, and Greg Thain. Improving bounds on the football

pool problem by integer programming and high-throughput computing. INFORMS

Journal on Computing, 21(3):445–457, 2009.

[49] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of

Symbolic Computation, 60(0):94 – 112, 2014.

[50] Wendy Myrvold and Patrick Fowler. Fast enumeration of all independent sets of a

graph up to isomorphism. Journal of Combinatorial Mathematics and Combinatorial

Computing, 85:173–194, May 2013.

[51] Patric R. J. Österg̊ard, Zehui Shao, and Xiaodong Xu. Bounds on the domination

number of Kneser graphs. Ars Mathematica Contemporanea, 9(2):197–205, 2015.

[52] Patric R. J. Österg̊ard and William D. Weakley. Values of domination numbers of the

queen’s graph. Electronic Journal of Combinatorics, 8(R29):1–19, 2001.

[53] Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Solving dominating set

in larger classes of graphs: FPT algorithms and polynomial kernels. In Amos Fiat

and Peter Sanders, editors, Algorithms - ESA 2009, volume 5757 of Lecture Notes in

Computer Science, pages 694–705. Springer Berlin Heidelberg, 2009.

[54] Dieter Rautenbach. On the differences between the upper irredundance, upper domina-

tion and independence numbers of a graph. Discrete Mathematics, 203(13):239 – 252,

1999.



171

[55] W. W. Rouse Ball. Mathematical Recreations and Essays (10th ed.). London,Macmillan,

1922.

[56] Anne Sinko and Peter J. Slater. Queen’s domination using border squares and (a, b)-

restricted domination. Discrete Mathematics, 308(20):4822 – 4828, 2008.

[57] N. J. A. Sloane. Online encyclopedia of ingeger sequences (OEIS): Entry A094087

(domination number of cartesian product of n-cycles). Retrieved June 15, 2016.

[58] N. J. A. Sloane. Online encyclopedia of ingeger sequences (OEIS): Entry A229803

(domination number of hex rook graph). Retrieved June 15, 2016.

[59] N. J. A. Sloane. Online encyclopedia of ingeger sequences (OEIS): Entry A251419

(domination number of triangle grid graph). Retrieved June 15, 2016.

[60] Johan M. M. van Rooij and Hans L. Bodlaender. Exact algorithms for dominating set.

Discrete Applied Mathematics, 159(17):2147 – 2164, 2011.

[61] Lutz Volkmann and Vadim E. Zverovich. Proof of a conjecture on irredundance perfect

graphs. Journal of Graph Theory, 41(4):292–306, 2002.

[62] Stan Wagon. Graph theory problems from hexagonal and traditional chess. The College

Mathematics Journal, 45(04):278–287, 2014.

[63] Peng-Jun Wan, K. M. Alzoubi, and O. Frieder. Distributed construction of connected

dominating set in wireless ad hoc networks. In INFOCOM 2002. Twenty-First Annual

Joint Conference of the IEEE Computer and Communications Societies., volume 3,

pages 1597–1604, 2002.

[64] William D. Weakley. Upper bounds for domination numbers of the Queen’s graph.

Discrete Mathematics, 242(13):229 – 243, 2002.



172

[65] Douglas B. West. Introduction to Graph Theory. Prentice Hall Inc., Upper Saddle River,

New Jersey, 1996.

[66] Jie Wu, Ming Gao, and I. Stojmenovic. On calculating power-aware connected domi-

nating sets for efficient routing in ad hoc wireless networks. In International Conference

on Parallel Processing, 2001, pages 346–354, 2001.

[67] Vadim E. Zverovich. On the differences of the independence, domination and irredun-

dance parameters of a graph. Australasian Journal of Combinatorics, 27:175–186, 2003.


	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Definitions
	Graphs
	Dominating Sets
	Independent Dominating Sets

	Complexity and Parameterized Complexity
	Related Computational Problems
	Algorithms to Compute Minimum Dominating Sets

	Queen Graphs and Other Interesting Graph Classes
	The Queen Domination Problem
	Irredundant Sets
	The Border Queen Problem
	Kneser Graphs
	Covering Codes and Football Pools
	Triangle Grid Graphs
	Hex Rook Graphs
	Cartesian Products of Cycles

	Algorithms
	Backtracking Framework
	Bounding Condition
	Vertex Selection
	Neighbour Ordering

	Bounding With Fixed Vertex Ordering
	Implementation: Algorithm 3.2

	Domination Degree Algorithms
	Domination Degree Multiset
	Candidate Degree Priority Queue
	Implementation: Algorithm 3.5

	Max Dominator Degree Algorithms
	MDD Ranking Data Structure
	Implementation: Algorithm 3.7


	Experimental Evaluation of Domination Algorithms
	Input Graph Dataset
	Methodology
	Mitigating the impact of `luck'

	Fixed-Ordering Implementations
	Domination Degree Implementations
	Single Aspect Comparisons

	Max Dominator Degree Implementations
	Single Aspect Comparison

	Comparison of Framework Algorithms
	Comparison with SageMath
	Choosing Representative Algorithms
	Overall Variant Comparison
	Comparison of Variants by Graph Family


	New Domination Results for Queen Problems
	Computing Independent Dominating Sets
	Splitting Computation Among Processes
	Counting Solutions up to Isomorphism
	Certificates of Independent Dominating Sets
	Rotated Border Constructions
	Searching for Minimum RBCs
	Summary of Border Queen Results


	Unidom
	The unidom Architecture
	Input Source
	Preprocessing Filters
	Solver
	Output Proxy

	Conclusions and Future Research
	Bibliography

